

For discussion of minimal machine

For BDS design team Andrei Seryi (SLAC)

RDR BDS Design

In TDP I & II plan, the scope of work changed, and the focus is shifted

- Focus on a few critical directions. Selection criteria:
 - -Critical impact on performance versus cost;
 - -Advanced ideas promising breakthrough in performance;
 - -Broad impact and synergy with other worldwide projects

• Three critical directions:

-General BDS design

 \rightarrow

-Test facilities, ATF2

Interaction Region optimization

beam dump photon collider crystal collimation crab cavity MDI diagnostics ...

ILC08

ATF2 commissioning & operation
Develop methods to achieve small beam size
Diagnostics, Laser Wires, Feedbacks ...

IR interface document & design SC FD prototyping and vibration test ILC-like FD for ATF2 ...

 \rightarrow

- New low P parameter set
 - Gives 2E34 with ½ of beam power
 - Better for background than RDR Low P
- Travelling focus [V.Balakin,1990] helps recovering luminosity while keeping lower beamstrahlung $\delta_{\rm B}$ and Y and avoiding the need to have short bunches
 - Rely on tighter focusing
 - Have higher sensitivity to beam offset at IP

250GeV/beam non-upgradable BDS

- Have optics
- Can improve and refine it
- It could be considered for MM

- Issues:
 - UPGRADE
 - ESPECIALLY IF UNDULATOR LOCETED UPSTREAM OF BDS

Baseline & "minimal" (250 GeV) layouts

ILC2006e (hybrid) Beam Delivery Systems Layout

ILC2006s Beam Delivery Systems Layout

ILC2006s: Lattice details

Positron Source & BDS integration

If min BDS used => E upgrade?

Operability?

Commissioning schedule?

Construction (radiation in BDS beamline during construction)?

Source merged into DR straight may be more natural?

Figure 1: Approximate lengths and locations of source components and damping rings compared to both the RDR BDS and the proposed minimum 500 GeV BDS.

18th Novembe

In parallel to MM, BDS plans..

- To study design ideas that may likely be incompatible with MM merged layout design
- These planned activities are
 - gg option design, including CFS layouts
 - for upstream BDS
 - for beam dump region
 - for possible laser or FEL near IR
 - study merged beam dump
 - study doubled L* that simplify MDI

additional angle is 5.5mrad and detector need to move by

Simplified IR

- Longer L*, long enough to have QDO outside of detector, separating M/D more cleanly and simplifying push-pull
 - Some impact on luminosity is unavoidable; Rvx may need to be increased
- If a longer L* design will be found viable, a question will be
 - whether to consider it as a permanent solution
 - if a Luminosity upgrade, by shortening the L*, would be considered later, after operational experience will be gained with a simpler system

Final comments

- As soon as components fit, any layout of merged source + BDS can <u>in principle</u> work
- BDS concerns:
 - shorter BDS+undulator upstream => E upgrade of BDS
 - interference of design, construction and operation
- Are there alternative ideas on the table?
 - E.g. sources in straight section of DR tunnel?
- Very general comment is MM approach (of merged systems) sellable?