### **RF Cluster Scheme**

**Application to Asian Sample Site** 

2008.11.17

KEK Atsushi Enomoto

#### **Contents**

- Introduction understand the proposal
- Application to Asian Sample Site
- Cost Impact on Civil in Asian Sample Site

## Introduction

#### **RF System Location**



• To reduce underground tunnel, part /full RF system shifted on the ground

#### **Overall View of the RF Cluster Scheme**



One RF cluster feeds RF along ~2.5 km (1.25 km for each sides)

# Ground Station for the Clustered RF sources Cluster Layout

Clusters of 70 10 MW klystrons housed, with modulators, in a single building on the surface, feed 350 MW into each of two ~0.5 m diameter evacuated circular waveguides.



One RF cluster feeds 64 RF units.

#### RF feeding along the underground tunnel

### **Local Distribution**

(remains essentially the same)

Each tap-off from the main waveguide feeds 10 MW through a high power window and probably a circulator or switch to a local PDS for a 3 cryomodule, 26 cavity RF unit (as shown for baseline).





#### **RDR Service Tunnel Layout**



RF Cluster system move almost all equipment to the ground surface

#### **RDR Service Tunnel Layout**

ILC Underground Structures Schematic Layout (ILC-.CE-1.1649.0016, 05 December 2006)



8 more RF units than RDR (#5 Shaft Cryogenic Plant)



RF Cluster system move almost all equipment to the ground surface



## **Application to Asian Sample Site**



#### **Access to Beam Tunnel in Asian Sample Site**



- The Asian terrain is not flat compared with Americas or European SSs.
- In RDR, sloped tunnels are used to access the underground except IR.

#### **RDR**



|          | Elevation   |                 | Overburden                                | Elevation | Drop from                         | Length from                |
|----------|-------------|-----------------|-------------------------------------------|-----------|-----------------------------------|----------------------------|
| Point ID | (A) Surface | (B) Beam Tunnel | above Beam Tunnel = (A)-(B)  (C) Entrance |           | Entrance to Beam Tunnel = (C)-(B) | Entrance to<br>Beam Tunnel |
| 7        | 400         | 80              | 320                                       | 204       | 124                               | 1,540                      |
| 5        | 368         | 80              | 288                                       | 226       | 146                               | 1,608                      |
| 3        | 488         | 80              | 408                                       | 238       | 158                               | 1,706                      |
| 2        | 180         | 80              | 100                                       | 156       | 76                                | 1,198                      |
| 4        | 164         | 80              | 84                                        | 117       | 37                                | 652                        |
| 6        | 178         | 80              | 98                                        | 165       | 85                                | 934                        |
| Average  | 296         | 80              | 216                                       | 184       | 104                               | 1,273                      |

- Very long access length is problem to be solved.
- RF waveguide length exceeds 2 km (1.25 km @beam tunnel + 1.27 km @access)!

#### **Attenuation Of RF Through Cylindrical Waveguides**

TE<sub>01</sub>: 
$$\alpha = \frac{R_s}{Z_0} \frac{1}{\sqrt{k_0^2 - (\chi_{01}/a)^2}} \frac{\chi_{01}^2}{k_0 a^3} \Omega$$

α: attenuation constant (neper/m)

 $R_s$ : skin resistance ( $\Omega$ )

 $Z_0$ : intrinsic impedance ~377  $\Omega$ 

k<sub>0</sub>: propagation constant in free space

 $k_c = X_{01}/a$ : cut-off propagation constant

 $X_{01}$ = 3.832 for TE01 mode

2a: inner diameter of cylindrical waveguide

Cu

$$\rho_{20} = 1.72 \text{ x } 10^{-8} \, \Omega \text{m}$$
 
$$\rho_{0\text{-}100} = 4.3 \text{ x } 10^{-3} \, \text{/deg}$$

$$\alpha$$
 = 4.498 x 10<sup>-5</sup> (2a = 0.48 m)

$$\alpha = 2.233 \times 10^{-5} (2a = 0.59 \text{ m})$$

@T=30 deg C



Waveguides which are ~1 km longer than those in Americas site have to be used,

with two choices,

- to use 0.48-m diameter waveguides and 8% more RF sources;
- to use 0.59-m diameter waveguides.



## Possibilities of reducing distance from surface to underground tunnel ----- though it may cost higher



#### Case B



|          | Elevation   |                 | Overburden                        | Elevation    | Drop from                               | Length from                |  |
|----------|-------------|-----------------|-----------------------------------|--------------|-----------------------------------------|----------------------------|--|
| Point ID | (A) Surface | (B) Beam Tunnel | above Bean<br>Tunnel<br>= (A)-(B) | (C) Entrance | Entrance to<br>Beam Tunnel<br>= (C)-(B) | Entrance to<br>Beam Tunnel |  |
| 7        | 330         | 80              | 250                               | 204          | 124                                     | 1,540                      |  |
| 5        | 344         | 80              | 264                               | 226          | 146                                     | 1,608                      |  |
| 3        | 493         | 80              | 413                               | 238          | 158                                     | 1,706                      |  |
| 2        | 188         | 80              | 108                               | 156          | 76                                      | 1,198                      |  |
| 4        | 173         | 80              | 93                                | 117          | 37                                      | 652                        |  |
| 6        | 161         | 80              | 81                                | 165          | 85                                      | 934                        |  |
| Average  | 282         | 80              | 202                               | 184          | 104                                     | 1,273                      |  |

 Increase of construction costs for longer shafts and access roads from the existing road to the shaft entrances.



|          |                       | Access Distance          |       |       |  |  |  |
|----------|-----------------------|--------------------------|-------|-------|--|--|--|
| Point ID | Entrance<br>Elevation | Drop Horizontal Distance |       | total |  |  |  |
| 7        | 300                   | 220                      | 560   | 780   |  |  |  |
| 5        | 5 226                 |                          | 526   | 736   |  |  |  |
| 3        | 238                   | 170                      | 1,330 | 1,500 |  |  |  |
| 2        | 156                   | 70                       | 130   | 200   |  |  |  |
| 4        | 117                   | 100                      | 180   | 280   |  |  |  |
| 6        | 165 100 140           |                          | 240   |       |  |  |  |
| Average  | 200                   |                          |       | 623   |  |  |  |

- Increase of waveguide length might be about half of sloped tunnel case.
- Construction cost of shafts plus horizontal tunnels should be compared with entire sloped tunnels.



|          |                       |      | Access Distance        | •     |
|----------|-----------------------|------|------------------------|-------|
| Point ID | Entrance<br>Elevation | Drop | Aorizontal<br>Distance | total |
| 7        | 300                   | 220  | <560                   | 780   |
| 5        | 226                   | 210  | <526                   | 736   |
| 3        | 238                   | 170  | <1,330                 | 1,500 |
| 2        | 156                   | 70   | <130                   | 200   |
| 4        | 117                   | 100  | <180                   | 280   |
| 6        | 165                   | 100  | <140                   | 240   |
| Average  | 200                   |      | <478                   |       |

- Increase of waveguide length might be about half less than Case A.
- Construction cost of shafts plus horizontal tunnels should be compared with entire sloped tunnels.

#### RDR access tunnel has enough space for waveguides



 Access tunnels at points 7, 5, 3, 2, 4, 6 are used, four more access tunnels have to be newly excavated.



#### **Changes of Electric Distribution**



TABLE 4.3-1 Estimated nominal power loads (MW) for 500 GeV centre-of-mass operation.

|                    |             |          | Convention    |                  |                    |          |                    |  |
|--------------------|-------------|----------|---------------|------------------|--------------------|----------|--------------------|--|
| Area<br>System     | RF<br>Power | Conv     | NC<br>Magnets | Water<br>Systems | Cryo Emer<br>Power |          | Total<br>(by area) |  |
|                    |             | <u> </u> |               |                  | <b>\</b>           | $\wedge$ |                    |  |
| Main Linac         | 75.72       | 13.54    | 0.78          | 9.86             | 33.0               | 0.4      | 134.21             |  |
|                    |             |          |               |                  |                    |          |                    |  |
| Totals (by system) | 102.0       | 32.5     | 25.6          | 17.9             | 36.9               | 1.4      | 216.3              |  |

- Most electric power will be distributed to surface facilities except for beam line equipment, part of cryogenic system (ex. cold boxes), and service to maintain underground.
- Area for substation at shaft-base cavern will be reduced.

#### **Changes of Electric Distribution**

- reduction of shaft-base cavern -



## **Changes of Cooling System**

#### Dec 14 2007

WATER AND AIR HEAT LOAD (all LCW) and 9-8-9 ML

| MAIN LINAC - ELECTRON & POSITRON                |          |                |       |         |                                  |                     |                   |            |
|-------------------------------------------------|----------|----------------|-------|---------|----------------------------------|---------------------|-------------------|------------|
|                                                 |          |                |       |         | To Low<br>Conductivit<br>y Water | to Chilled<br>Water | keith Jobe<br>Nov | load to Ai |
|                                                 |          |                | Total | Average | Heat                             | Heat                | Power<br>fraction |            |
|                                                 |          |                | Heat  | Heat    | Load to                          | Load to             | to                | Powert     |
|                                                 | Quantity |                | Load  | Load    | Water                            | Water               | Tunnel            | Tunne      |
| Components                                      | Per 36m  | Location       | (KW)  | (KW)    | (KW)                             | (KW)                | Air (0-1)         | Air (KW    |
| Non-RF Components                               |          |                | . ,   |         | . ,                              |                     |                   | ,          |
| LCW Skid Pump 1 per 4 rf - Motor/Feeder Loss    | 0.25     | Service Tunnel | 0.60  | 0.60    | 0                                | 0                   | 1.00              | 0.60       |
| I^2R Loss and Motor Loss (misc)                 | 1        | Service Tunnel | 8.99  | 8.22    | 0                                | 0                   | 1.00              | 8.22       |
| Fancoils (5 ton Chilled Water) 1.5 Hp           | 2        | Service Tunnel | 2.91  | 2.91    | 0                                | 0                   |                   |            |
| Rack Water Skid                                 | 0.25     | Service Tunnel | 0.20  | 0.20    | 0                                | 0                   | 1.00              | 0.20       |
| Lighting Heat Dissipation ~1.3W/sf              |          | Service Tunnel | 1.65  | 1.65    | 0                                | 0                   | 1.00              | 1.65       |
| AC Pwr Transformer 34.548 kV                    | 0.25     | Service Tunnel | 2.00  | 2.00    | 1.50                             | 0                   | 0.25              | 0.50       |
| Emerg. AC Pwr Transformer 34.548 kV             |          | Service Tunnel | 1.00  | 1.00    | 0                                | 0                   | 1.00              | 1.00       |
| RF Components                                   |          |                |       |         |                                  |                     |                   |            |
| RF Charging Supply 34.5 Kv AC-8KV DC            | 1/36 m   | Service Tunnel | 4.0   | 4.0     | 2.8                              | 0                   | 0.3               | 1.2        |
| Switching power supply 4kV 5okW                 | 1/36 m   | Service Tunnel | 7.5   | 7.5     | 4.5                              | 0                   | 0.4               | 3.0        |
| Modulator                                       | 1/36 m   | Service Tunnel | 7.5   | 7.5     | 4.5                              | 0                   | 0.4               | 3.0        |
| Pulse Transformer                               | 1/36 m   | Service Tunnel | 1.0   | 1.0     | 0.7                              | 0                   | 0.3               | 0.3        |
| Klystron Socket Tank / Gun                      | 1/36 m   | Service Tunnel | 1.0   | 1.0     | 0.8                              | 0                   | 0.2               | 0.2        |
| Klystron Focusing Coil (Solenoid )              | 1/36 m   | Service Tunnel |       | 4.0     | 5.5                              | 0                   | 0.1               | 0.4        |
| Klystron Collector                              | 1/36 m   | Service Tunnel | l _   |         | 45.8                             | 0                   |                   |            |
| Klystron Body & Windows                         | 1/36 m   | Service Tunnel | 58.9  | 47.2    | 4.2                              | 0                   | 0.0               | 1.4        |
| Relay Racks (Instrument Racks)                  | 1/36 m   | Service Tunnel | 10.0  | 10.0    | 0                                | 11.5                | -0.2              | -1.5       |
|                                                 | 2/36 m   | Service Tunnel |       |         | 0                                |                     |                   | 0.0        |
|                                                 | 1/36 m   | Service Tunnel |       |         | 0                                |                     |                   | 1.166      |
| RF Distribution (Attenuators, Loads, Waveguide, | 1/36 m   | Penetration    |       |         | 0.676                            |                     |                   |            |
| Circulators all in series connection)           | 1/36 m   | Beam Tunnel    |       |         | 0.0                              | 0                   |                   | 5.9        |
|                                                 | 26/36 m  | Beam Tunnel    |       |         | 2.49                             | 0                   |                   | 0.0        |
|                                                 | 24/36 m  | Beam Tunnel    |       |         | 30.05                            |                     |                   | 0.0        |
| Subtotal RF unit Only                           |          |                | 90    | 82      | 102.0                            |                     |                   |            |
| Total RF                                        |          |                | 107   | 99      | 103.5                            | 11.5                |                   | 21.        |



- Total Heat load to Air/Chilled water in service tunnel (per RF) 32.9

  Total Heat load to LCW (per RF) 103.5

  Total Heat load to air in beam tunnel (ignore rock contribution for now) 5.9
- ~30% of the heat loads remain in the undergroud.
- Area for substation at shaft-base cavern and RF skids will be reduced in capacity but not eliminated.

#### Waveguide Temperature Issue - without cooling water -

*dP/dx*, *q* (W/m)

$$-\frac{dP}{dx} = 2\alpha P$$
$$P = P_0 e^{-2\alpha x}$$

-dP/dx: lossed microwave power per unit length (W/m)

a: attenuation constant (neper/m)

P: transmitted power (W)

P<sub>0</sub>: initial power generated by RF cluster (W)

x: transmitted distance (m)

$$\begin{split} q &= h_{se} \pi D_e \Delta \theta \\ h_{se} &= \varepsilon \sigma \left(T_{se}^4 - T_a^4\right) \middle/ \Delta \theta + 1.19 \left(\frac{\Delta \theta}{D_e}\right)^{0.25} \left(\frac{w + 0.348}{0.348}\right)^{0.5} \\ \Delta \theta &= \theta_{se} - \theta_a \end{split} \tag{JIS A9501}$$

q: dissipated heat by radiation and convection per unit length (W/m)

h<sub>se</sub>: heat dissipation constant from surface of horizontal beam pipe (W/m<sup>2</sup>K)

D<sub>a</sub>: outer diameter of waveguide (m)

 $\theta_{so}$ : temperature of surface on waveguide (deg C)

 $\theta_a$ : temperature of ambient air around waveguide (deg C)

ε: radiation efficiency

σ: Stefan-Boltzmann constant 5.67 x10<sup>-8</sup> (Wm<sup>-2</sup>K<sup>-4</sup>)

 $T_{se}$ : temperature of surface on waveguide (deg K) =  $\theta_{se}$ +273

 $T_a$ : temperature of ambient air around waveguide (deg K) =  $\theta_a$ +273

w: wind velocity (m/s)



Waveguides radiate ~250 W/m max. or ~9 kW/RF unit max. w/o cooling water; Expansion of SUS (copper coating inside) pipe will be 240 mm/km for  $\Delta\theta$  = 20 deg C.

**Changes of Shaft-base Cavern Cooling-water Plants** 



#### Additional Surface Building - Estimation of RF Source Size -



#### **Cluster Size**

HLRF Floors (~2000 m² x 2 levels)



• LLRF Floor (~800 m<sup>2</sup>)



#### **Cluster Size (Compact)**

HLRF Floors (~1500 m<sup>2</sup> x 2 levels)



 $7.315 \times 7 + 1.219 \times 8 + 1.168 \times 2 = 63.3$ 



#### Main Linac Surface Structures (RDR)

#### ILC PROJECT - SURFACE BUILDINGS ANCILLARY FACILITIES ASIAN REGION Draft 4/2/07

|    |                                                                                     | Shaft Area   | 4-5-6-7+1/2 (2+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|-------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ī  | Building Type / Area System                                                         | _            | Main linac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Г  |                                                                                     | # buildings  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1  | Detector Assembly                                                                   | Tot. surface | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Building /shaft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2  | Offices for Technical Staff                                                         |              | 5<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3  | Electrical building                                                                 |              | 5<br>3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 720 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4  | Cooling Tower & Pump Station                                                        | ,            | 5<br>3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 650 m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5  | Cooling Ventilation building                                                        |              | 5<br>4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                                                     | ,,           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Г  |                                                                                     |              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7  | Cryo - Warm Compressor                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 720 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8  | Cryo - Surface Cold box                                                             | "            | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 600 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9  | Control Rooms                                                                       |              | 5<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 | Control Room                                                                        |              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Г  |                                                                                     | , ,          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Г  |                                                                                     |              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12 | Site Access building                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13 | Shaft Access                                                                        | "            | 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 660 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14 | Laser building                                                                      | "            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15 | Rad building                                                                        |              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16 | Gaz building                                                                        |              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Outdoor structure /shat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Г  |                                                                                     | #            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Г  |                                                                                     | #            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>4 |              | Building Type / Area System  # buildings Tot. surface  2 Offices for Technical Staff  3 Electrical building  4 Cooling Tower & Pump Station  5 Cooling Ventilation building  6 Beam dump cooling building  7 Cryo - Warm Compressor  8 Cryo - Surface Cold box  9 Control Rooms  10 Control Room  11 Workshop  12 Site Access building  13 Shaft Access  14 Laser building  15 Rad building  16 Gaz building  17 Underground galleries  18 Dividence  19 Tot. Length  # Underground galleries  # Tot. Length | # buildings 0  Detector Assembly Tot. surface 0  Offices for Technical Staff " 5  Detectrical building " 5  Electrical building " 5  Cooling Tower & Pump Station " 5  Cooling Ventilation building " 4000  Beam dump cooling building " 0  Cryo - Warm Compressor " 3600  Cryo - Surface Cold box " 5  Control Rooms " 5  Control Room " 0  Underground galleries Tot. Length 5  Underground galleries Tot. Length 5  Detector Assembly Tot. Surface O  Tot. |

AMERICAS REGION

|      |        | 3 E A N |       | 101   |
|------|--------|---------|-------|-------|
| -111 | W ( )) | ノーハN    | I REG | IC DE |
| _0   | NO.    |         |       | -     |

| 4-5-6-7+1/2 (2+3)     |
|-----------------------|
| Main linac            |
| 0                     |
| 0<br>0<br>4           |
|                       |
| 1396<br>5             |
| 5                     |
| 695<br>5              |
| 3485                  |
| 3485<br>5             |
| 2615                  |
| 2615<br>0             |
| 0<br>5                |
| 5                     |
| 2090<br>5             |
| 2005                  |
| 2905<br>0             |
| 0 1                   |
| 0<br>0<br>0<br>4      |
| 0                     |
|                       |
| 4192<br>4             |
|                       |
| 280<br>5              |
|                       |
| 4355<br>0             |
| o                     |
| 0                     |
| 0                     |
| 0                     |
| 0<br>0<br>0<br>0<br>5 |
| 5                     |
| 600<br>5              |
| 5000                  |
| 5000                  |

| 1   | 4-5-6-7+1/2 (2+3               |
|-----|--------------------------------|
| 1   | 4-5-6-7+1/2 (2+3<br>Main linac |
| i   | 0                              |
|     | 0<br>5                         |
| Ī   |                                |
|     | 1000<br>5                      |
| Ī   | 5                              |
|     | 3600<br>5                      |
| 1   | 5                              |
|     | 3250<br>5                      |
| 1   |                                |
| _   | 4000<br>0                      |
|     | 0                              |
|     | 0                              |
| 1   | <u>0</u>                       |
|     | 3600<br>5                      |
|     |                                |
|     | 3000<br>5                      |
|     | 5                              |
|     | 500<br>0                       |
|     | 0                              |
|     | 0                              |
|     | 0 2                            |
|     | 900<br>5                       |
|     |                                |
|     | 500<br>5                       |
|     |                                |
| -   | 3300<br>0                      |
|     |                                |
| -   | 0                              |
|     |                                |
| ٠   | 0                              |
|     | ő                              |
| +   | 0<br>5                         |
|     | 600                            |
| +   | 600<br>5                       |
|     | 5000                           |
| - 1 |                                |

Conventional Facilities Supporting Documentation for the ILC Reference Design Report ILC-NOTE-2007-019, May 2007, Rev. 0

5,550 m<sup>2</sup> /shaft + 450 m<sup>2</sup> /workshop + ~4,000 m<sup>2</sup> for RF Cluster Building

#### **Cost Impact on Civil in Asian Sample Site**

Total

## **CFS Cost Feature**

Denotes Site Independent costed by another region.

Regional monetary unit used

Manhours supplied for all In-House Engineering K units (total manhours /1000

Asian

All values are in K units (Monetary value /1000)

Asian

|         |            | Conventional Facilities                   |  |
|---------|------------|-------------------------------------------|--|
|         |            |                                           |  |
|         |            | Civil Engineering                         |  |
| 1.7.1.1 |            | Engineering, study work and documentation |  |
|         | 1.7.1.1.1  | In-house Engineering (man-hour)           |  |
|         | 1.7.1.1.2  | Outsourced Consultancy Services           |  |
| 1.7.1.2 |            | Underground Facilities                    |  |
|         | 1.7.1.2.1  | Shafts (Sloped tunnels)                   |  |
|         | 1.7.1.2.2  | Tunnels —                                 |  |
|         | 1.7.1.2.3  | Halls                                     |  |
|         | 1.7.1.2.4  | Caverns                                   |  |
|         | 1.7.1.4.5  | Miscellaneous works                       |  |
| 1.7.1.3 |            | Surface Structures                        |  |
|         | 1.7.1.3.1  | Central Lab Buildings                     |  |
|         | 1.7.1.3.2  | Detector Assembly Buildings               |  |
|         | 1.7.1.3.3  | Office Buildings                          |  |
|         | 1.7.1.3.4  | Service Buildings                         |  |
|         | 1.7.1.3.5  | Cryo- Equipment Buildings                 |  |
|         | 1.7.1.3.6  | Control Buildings                         |  |
|         | 1.7.1.3.7  | Workshops                                 |  |
|         | 1.7.1.3.8  | Site Access Control Buildings             |  |
|         | 1.7.1.3.9  | Shaft Access Buildings                    |  |
|         | 1.7.1.3.10 |                                           |  |
|         | 1.7.1.3.11 |                                           |  |
| 1.7.1.4 |            | Site Development                          |  |
|         | 1.7.1.4.1  | Off-site Site work                        |  |
|         | 1.7.1.4.2  | Network of Monuments                      |  |
|         | 1.7.1.4.3  | Construction Support                      |  |
|         | 1.7.1.4.4  | Site Preparation                          |  |
|         | 1.7.1.4.5  | Utility Distribution                      |  |
|         | 1.7.1.4.6  | Road, Sidewalks & Parking Areas           |  |
|         | 1.7.1.4.7  | Landscaping                               |  |
|         | 1.7.1.4.8  | Environmental                             |  |
|         | 1.7.1.4.9  | Miscellaneous Site Works                  |  |
|         |            | ELECTRICAL                                |  |
|         |            | Safety Equipment                          |  |



## Cost Impact of RF Cluster Scheme on Civil Construction in Asian Sample Site

| (1) 17122 Elimination of ML service tunnel 64.5 m, 22.278 km:                     | -8.1%                      |
|-----------------------------------------------------------------------------------|----------------------------|
| (Elimination of Entire Service Tunnel φ4.5 m, 30.019 km: -10.9% )                 |                            |
| (2) 17121 Four additional access tunnels for RF clusters 3.5 m (w) x 3.5 m (H)    | +1.2%                      |
| (3) 17124 Reduced size of underground caverns:                                    | <b>-0.8%</b> (guess ~half) |
| (4) 1713 RF cluster building ~ 4,000 m <sup>2</sup> x 10:                         | +4.0%                      |
| (5) 1713 Moved area from underground caverns to surface 1,000 m <sup>2</sup> x 6: | +0.6%                      |
| (6) 171431 Decrease of construction support {(1)+(2)+(3)} x 8%:                   | -0.6%                      |
| (7) 171432 Increase of construction support {(4)+(5) x 4%:                        | +0.2%                      |
| (8) 17144 Increase of site preparation {(4000/3) x10 + 1000 x 6}/0.3 m2:          | +0.4%                      |
| (9) 1711 Reduction of engineering cost {(1)+(2)+(3)} x 10% {(4)+(5) x 5%:         | -0.5%                      |
|                                                                                   | -3.6%                      |
|                                                                                   | of total CFS cost          |

### **Summary**

- Application of RF cluster scheme to Asian Sample Site was studied.
- Roughly 10% of CFS cost will be saved by single tunnel, but 6% will be newly necessary for RF cluster facilities in Asian case.