

Shin Michizono (KEK)
Brian Chase (FNAL)
Stefan Simrock (DESY)

- Klystron cluster / Distributed rf schemes
- Operational gain and bandwidth
- Power and QI control
- Possible control system @klystron cluster
- High availability @ distributed rf

Required stability

- Llrf stability requirements (@ ML and BC) are < 0.07%, 0.24deg.
- •Each error source should be <1/3 of requirements (<0.02%, 0.08deg.)

TABLE 3.9-1

Summary of tolerances for phase and amplitude control. These tolerances limit the average luminosity loss to <2% and limit the increase in RMS center-of-mass energy spread to <10% of the nominal energy spread.

Location	Phase (degree)		Amplitude (%)		limitation
	correlated	uncorr.	correlated	uncorr.	
Bunch Compressor	0.24	0.48	0.5	1.6	timing stability at IP
					(luminosity)
Main Linac	0.35	5.6	0.07	1.05	energy stability $\leq 0.1\%$

Klystron cluster

- The configuration of klystron cluster introduces total 10~15us latency.
 - -> larger latency than our current model (<1us)
 - 3.5us (rf transmission)
 - 1us (ADC detection at each 26 cavities in the tunnel and conversion to optical signal of 26 vector sum)
 - 6us (optical transmission)
 - 1us (conversion and vector sum of 27 units)
 - 1us (DAC outputs to 27units)
- LLRF detectors will be located in the tunnel (and process each 26 cavities).

Distributed rf scheme

- One rf unit drives single or two cavities.
- Since the rf source is located just around the cavity, FB loop would be <0.3 us.
- The LLRF performance would be best.
- LLRF detectors will be located in the tunnel (and process each 26 cavities).

Comparison of IIrf configurations

	Baseline	Single tunnel	Klystron cluster	Distributed rf
No. of tunnels	2	1	1	1
LLRF unit	Service tunnel	Beam tunnel	Beam tunnel	Beam tunnel
Cavity/ rf unit	26	26	780	1 or 2
No. of vector sum	26	26	780	1 or 2
QI and power distribution control	Necessary	Necessary	Difficult	No need
No. of IIrf cable /rf	~80	~80	~80*30 or fast optical cables	3 or 6
Loop delay	~1 us	~1 us	~10 us	~0.3 us

- Operational gain?
- Operational bandwidth?
- Power and QI control?
- High availability?

Shin Michizono (KEK)
Brian Chase (FNAL)
Stefan Simrock (DESY)

Klystron cluster / Distributed rf schemes

- Operational gain and bandwidth
- Power and QI control
- Possible control system @klystron cluster
- High availability @ distributed rf

Operational gain

- ■Error is only compressed by a factor of gain
- ■Gain margin is calculated from Bode-plot.
- Operational gain can become ~1000 in case of distributed rf owing to its short latency (such as total loop delay of 0.3 us).

C Operational bandwidth (without beam)

Latency	0.3us	1us	10us	15us	15us PI
operation gain	600	200	25	15	15
bandwidth [kHz]	700	230	25	17	17

- ■Bandwidth becomes ~700 kHz in case of distributed rf scheme
- Bandwidth is <20 kHz at klystron cluster.</p>

Step response of Ilrf control (w/o beam)

- Fast response will be offered in case of short delay of 0.3 us at distributed rf scheme.
- We can expect faster response with beam condition due to the lower QI.

Latency	0.3us	1us	15us	15us PI
scheme	Distributed rf	baseline	Klystro	n cluster
Proportional gain	600	200	15	15
Integral gain	0	0	0	15,000
90% Settle time [us]	2	6	100	80
Saturation value	99.8%	99.5%	93.3%	100%

FB latency and Ilrf performance @klystron cluster

Assumption

- Cavity Q:3e6 -> decay time constant=462us and f1/2=217Hz
- All signals change in this time constant
- After 15us of blind time, system changes 2% of perturbation (still large even though the time constant is slow).
- Example: Kly HV change (1%, 12 deg. in phase) during rf operation.
 - Cavity phase changes by 0.24 deg. (\(\frac{12*2\%}{2}\)) far from our goal of <0.1deg.</p>
- 15us FB loop delay (blind time for fluctuation detection) is large.

Shin Michizono (KEK)
Brian Chase (FNAL)
Stefan Simrock (DESY)

- Klystron cluster / Distributed rf schemes
- Operational gain and bandwidth

- Power and QI control
- Possible control system @klystron cluster
- High availability @ distributed rf

Power and QI control

- Vector sum control under restrict quench limit requires power and Qı control Klystron cluster:
- Rather complicated because of >700 vector sum control Distributed rf:
- Each cavity can be operated near the limit of quench. (No need for P and QI control)

(baseline & klystron cluster)

Baseline & klystron cluster:

■ In case of rf power and Ql control, additional 12% rf power is necessary at +/-50% coupling control for flatten the rf field under beam loading.

Power, QI control (distributed rf)

Distributed rf:

- If the cavity coupler 's Q value within +/-15% to ideal Q value, the additional rf power is less than 0.6%
- -> No need for variable coupler

Shin Michizono (KEK)
Brian Chase (FNAL)
Stefan Simrock (DESY)

- Klystron cluster / Distributed rf schemes
- Operational gain and bandwidth
- Power and QI control

- Possible control system @klystron cluster
- High availability @ distributed rf

Example of field control (36kly. 300MW op.)

Summary of Klystron cluster

1. Field regulation

- field regulation worse but may be still ok
- higher stability of all subsystems required
- robust against perturbations or parameter changes significantly reduced
- operational field/current limits will be lower
- difficulties with feedforward due to delay between rf and beam (upstream rf distribution)
- should use fast klystron loops to reduce HLRF errors.

2. Availability

- exception detection and handling severely limited
- hot spare concept cannot be implemented

3. Operational

- Cannot simply turn on-off (or by-pass or manipulate) individual rf stations for commissioning, operational or diagnostic purposes.
 - Setting up linac cannot be done by incrementally adding or controlling rf stations
- Operation close to performance limit (cavity quench, field emission, klystron saturation) will become much more challenging.

Shin Michizono (KEK)
Brian Chase (FNAL)
Stefan Simrock (DESY)

- Klystron cluster / Distributed rf schemes
- Operational gain and bandwidth
- Power and QI control
- Possible control system @klystron cluster

High availability @ distributed rf

High Availability @ distributed rf

Assumption:

There is a 0.4% stanby cavities (1/250:corresponding to raughly 1 rf unit in baseline

and 26 units in single cavity driver).

each component reliability [%]

$$P_{total} = p^{N} + \sum_{k=1}^{m} {}_{N}C_{m}p^{N-k}(1-p)^{k}$$

$$_{N}C_{m}=\frac{N!}{(N-m)!m!}$$

p: each rf unit reliability

Ptotal: total reliability

Baseline: N=250,m=1

Single drive: N=250*26=6,500, m=26

High Availability @ distributed rf (2)

■ Each rf unit has a reliability of 99.8%? Maybe yes.

: 99.8% corresponds to 20 min./week, 5 hrs/yr (5,000 hrs op.)

From the experience of KEKB injector linac (60 units, 7,000 hrs operation/yr.), the downtime of the unit is<5min./week.

- In addition, we can neglect one cavity failure. (because its energy contribution is negligibly small (0.015%).
- -> We can make some diagnostics even during luminosity operation!
- -> Exception handling becomes quite simple. (Fast recovery of beam energy is not necessary even when quench or rf failure happen.)

Summary of distributed rf

LLRF performance

- shorter latency results in higher FB gain (robustness)
- higher FB operation (aiming the FB gain of ~1000)

Operability

- -simpler cavity control (flat field obtainable near below quench without worrying about QI and P control scheme)
- LLRF diagnostics become possible even during luminosity operation.

HA/Robustness

- higher availability owing to the flexible selection of stand-by cavity

Exception handling

- No need for fast recovery (because each unit has small energy contribution)

Other advantages/disadvantages

- Reduce the length of rf cables (less cost, less phase rotation)
- Omit fast optical link between llrf board s(for vector sum)
- Omit phase-shifter, tunable coupler in waveguide and cavity
- Need IQ modulator (in each rf unit) (but the devise is cheap)

Comparison of Ilrf configurations

	Baseline	Single tunnel	Klystron cluster	Distributed rf
No. of tunnels	2	1	1	1
LLRF unit	Service tunnel	Beam tunnel	Beam tunnel	Beam tunnel
Cavity/ rf unit	26	26	780	1 or 2
No. of vector sum	26	26	780	1 or 2
No. of Ilrf cable /rf	~80	~80	~80*30 or fast optical cables	3 or 6
Loop delay	~1 us	~1 us	~10 us	~0.3 us
Typical FB gain	~100	~100	~20	~1,000
QI and power distribution control	Necessary	Necessary	Difficult	No need
Each cavity field flatness	Bad	Bad	Worse	Best or better
Robustness	Good	Good	Not good	Better
Exception handling	Not easy	Not easy	Quite complicated	Easy

Appendix: directional coupler

$$I_{4} \xrightarrow{R_{4}} \qquad R_{3} \xrightarrow{S} \qquad R = \begin{bmatrix} 0 & \sqrt{1-C^{2}} & jC & 0 \\ \sqrt{1-C^{2}} & 0 & 0 & jC \\ \sqrt{1-C^{2}} & 0 & 0 & \sqrt{1-C^{2}} \\ jC & 0 & 0 & \sqrt{1-C^{2}} \\ jC & 0 & jC & \sqrt{1-C^{2}} \end{bmatrix}$$

$$C_{k} = \frac{1}{\sqrt{k}}; \sqrt{1-C^{2}} = \sqrt{\frac{k-1}{k}}$$

$$C_k = \frac{1}{\sqrt{k}}; \sqrt{1 - C^2} = \sqrt{\frac{n}{k}}$$

$$I_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n V_k e^{j\theta_k}$$

If #1~#16:0 & #17~#32:-0

$$I_{out} = \frac{1}{\sqrt{32}} \left(\sum_{k=1}^{16} V_k e^{j\theta_k} + \sum_{k=17}^{32} V_k e^{j\theta_k} \right) = \frac{V_1}{\sqrt{32}} \left(16e^{j\theta} + 16e^{-j\theta} \right)$$
$$= \sqrt{32} V_1 \cos \theta$$

$$P_{out} = \left| \sqrt{32} V_1 \cos \theta \right|^2 = 320 \cdot \cos^2 \theta [MW]$$

