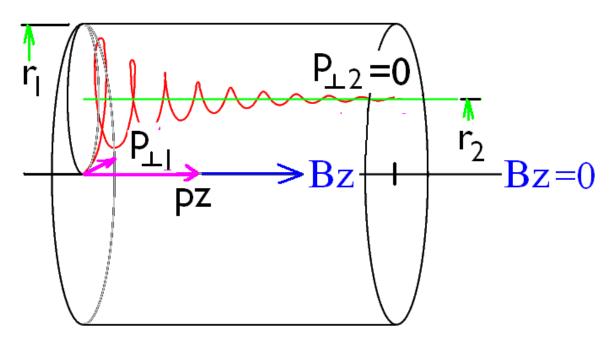

SOLENOID HOMEWORK

- 1. Consider a 200 MeV/c particle starting on the axis with a transverse momentum of 20 MeV/c in an axial solenoidal field of $3.33 \, \text{T}$.
 - (a) What is its motion in the lab frame and out to what transverse distance from the axis does it get.
 - (b) What is the distance along the axis before it first returns to that axis?
 - (c) What is the wavelength λ in the Larmor frame?
 - (d) What is the lattice parameter β_{\perp} for that particle

- 2. Consider again a 200 MeV/c particle starting on the axis with a transverse momentum of 20 MeV/c in an axial solenoidal field of 3.33 T. After a distance
 - A) corresponding to 1/2 a helix rotation, or
 - B) corresponding to a full helix rotation, the field doubles, over a short distance, to 6.66 T.


In the two cases determine the shape of the subsequent motion projected onto the x, y plane

COOLING HOMEWORK

- 1. In a linear cooling channel, assume $\beta_{\perp}=0.4$ m, $C(mat,E)=38\ 10^{-4}$, β_v =0.85.
 - a) What is the expected equilibrium transverse emittance?
- 2. A Guggenheim cooling channel, with emittance exchange in wedges cools all 6 dimensions. Assume $\beta_{\perp}=0.4$ m, dispersion at the hydrogen wedge D=7 cm, the length of the wedge on axis $\ell=28.6$ cm, and the height from the axis to the apex of the wedge $h=\frac{\ell}{2\,\tan(100^o/2)}=12\,$ cm. Assume that the sum of partition functions $\Sigma J_i\approx 2.0$, $C(mat,E)=38\,10^{-4}$, good mixing between x and y, and the relativistic β_v =0.85.
 - a) What are the three partition functions in this case?
 - b) What is the expected equilibrium transverse emittance?

3. Consider a long solenoid with $B_z=3.33~{\rm T}$ and a muon starting on axis with $p_\perp=20~{\rm MeV/c}$ and $p_z=200~{\rm MeV/c}$. Imagine an ideal transverse cooling system with continuous energy loss and re-acceleration so that all transverse momenta are reduced to near zero, and the muon now at half its maximum distance from the axis $r_2=r_1/2$, passing straight down the field lines at p_z .

- (a) What now is its motion in the Larmor frame?
- (b) If now the field B_z suddenly stops, what is the further motion of the muon?