A first look to a 3 km DR

M. Biagini, INFN/LNF Nov. 2008

Outlook

- Started from new DCO lattice
- Substituted FODO cells with SuperB-like arc cells, keeping untouched the DCO straights
- At present bends and quadrupoles lengths in the arc cells have not been changed from SuperB, 128 arc bends are 5.4 m long. This may be adjusted if required
- Lower emittance, same damping time, with half n. of wigglers of the 6 Km option

New 3Km layout

Ring

Curly H

2000.

2500.

3000.

0.007 -0.005 -0.002 -

Original, 6Km

SuperB-like cells

Dispersion suppressors

Matching to wiggler section

Matching to tune trombone section

Middle-arc section for phase tuning between sextupoles

Features

- Half DCO circumference
- Arcs contain alternating cells with different phase advances:

```
- cell #1: L=20 m, \mu_x = 0.72, \mu_y = 0.27
- cell #2: L=21 m, \mu_x = 0.5, \mu_v = 0.2
```

- Dispersion in cell lower wrt DCO → sextupoles less effective
- Emittance can be tuned by changing the x-phase advance/cell in cell#1
- Same is true for momentum compaction
- Increasing x-phase advance/cell may reduce dynamic aperture (to check)
- 1 RF cell (originally 2)
- 5 shorter "tune trombone" cells (originally 6)
- 11 wiggler sections (originally 22)
- 3 chicane sections (originally 4)

Magnet counts

Arc dipole length	5.4 m	2.0 m
Arc dipole field (2 types)	0.178/0.243 T	0.273 T
Number of arc dipoles	128	192
Number of 2 m dipoles	4	8
Number of 1 m dipoles (in chicanes)	36	48
Total number of quadrupoles	502	690
Maximum quadrupole gradient	7.5 T/m	12.0 T/m
Total number of sextupoles	192	384
Maximum sextupole gradient	145 T/m ²	215 T/m ²
Wiggler peak field	1.6 T	1.6 T
Wiggler period	0.4 m	0.4 m
Wiggler unit lenght	2.45 m	2.45 m
Wiggler total length	107.8 m	215.6 m

Parameters

Circumference (m)	3238.22	RF frequency (MHz)		650	
Energy (GeV)	5	RF voltage (MV)		7	
Bunch length (mm)	6	Harmonic number		14042	
Natural X chromaticity	-102	Natural Y chromaticity		-66	
X phase advance/cell#1	0.72	0.6	0.65	0.75	0.78
Normalized ε_x (μ m)	3.4	4.3	3.5	3.9	5.5
Momentum compaction x10 ⁻⁴	1.8	1.4	1.5	2.1	2.7
Transverse damping time (ms)	20.6	21	21	20.2	19.6
Max β_x in cell #1 (m)	50	80	60	45	45
Max D _x in cell #1 (m)	0.4	0.3	0.3	0.5	0.6

In red baseline parameters (see plots)

Issues and future work

- Chromaticity higher wrt DCO
- Sextupoles and chromatic properties (W functions) still to be optimized
- Less sextupoles available (less cells!) with lower dispersion and larger chromaticity
- DA still to be optimized (at present small)

Conclusions

- Using the DCO lattice straights a shorter layout (half) has been designed
- SuperB-like arc cells used (large x-phase advance/cell) instead of FODO cells
- Lower emittance, same damping time, has been achieved. Emittance tunable with x-phase advance/cell#1 (no change in bending angle)
- Momentum compaction also easily tunable, as for emittance, from 1.4 to 2.7
- Dynamic aperture still to be studied
- Seems worthwhile to pursue this study