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Talk is given on behalf of all enthusiasts working for polarized beams, in particular:
J. List, K. Moffeit, M. Woods, G. Moortgat-Pick, D. Kaefer, P.Schuler, K. Moenig, A.
Hartin, A. Schaelicke, A. Ushakov, C. Rimbault, and participants of the

“Workshop on polarimetry and energy measurement” in Zeuthen, April 2008.

Talks presented at LCWSO08/ILC08
Jenny List:

Precision of Polarisation and Beam Energy Measurements at the ILC
Upstream polarimeter
Daniela Kaefer:
Compton Cherenkov detector development
Anthony Hartin:
Depolarization from the upstream to the downstream polarimeter
Cecile Rimbault:

Implementation and study of depolarizing effects in GINEA-PIG++ beam-beam interaction
siulation

Ken Moffeit:
Positron Spin Rotation at lower energy than the damping ring
Sabine Riemann:
Fast or slow positron spin flipping
Gudrid Moortgat-Pick:
Precision Electroweak Measurements During Calibration Running at E_,,=91GeV
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,',IE Outline

* Introductive remarks
* Production of intense polarized beams
* Polarimetry

« Summary including recommendations from April
workshop on polarization and energy measurements
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,',l,': - Introductive remarks
* In general, with e- and e+ polarization
— Knowledge of initial state
— Enhancement and suppression of processes

— Choice of initial helicity states < additional
degrees of freedom
 higher precision
* less ambiguities
— Disentangling of new physics

* Polarization is essential for precision tests

— Minimum: polarized electrons, unpolarized
positrons

— powerful: polarized electrons and polarized
positrons
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Detailed summary of physics goal with

polarized electrons and polarized positrons:
— POWER Report [Phys.Rept. 460 (2008) 131]
— Physics RDR
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Production of intense beams

* Production of polarized electrons
* Production of (polarized) positrons



,','E Electron Source System

Spin rotation requirements:

Fast spin flip done with laser

Damping Ring

RDR: SC solenoid for
® spin rotation

Faraday Cup
Energy Compression and Mott
: ; L-band (B=0.75)  polarimet

Y. Spin Rotation NC tune-up dump TW Bunching o(glrSnVE)er

2x5MW
(1+ 1 spare)

SC e LINAC (5.0 GeV) (11.3kw) and Pre-Acceleration

e DC Gun (2%)

SC tune-up dump (311 kW) TI
8x 10 MW Energy Collimation 10 MW 10 MW 10 MW §§
/ (Vertical Chicane) SPARE e
A Drive
- D SHB Laser
(above
32nC 5nC Ground)

’\ 76 MeV - 5.0 GeV 140 keV - 76 MeV /‘

vy Uy R R



,',IE Baseline Spin Rotation System

S transV erse
kRota“O“‘

® DR

ical 1dS (SC)
%:‘;g‘;‘;‘;s\om pair of solenoid

Slongitudonal \

5 GeV
Bend of n * 7.9312° , _[Bd
A "B p
Odd Integer
_ E[GeV]
o 0.44065
Dipole and solenoid strength Dipole:  7.9312°
are set by spin manipulation >~ 2kG

Solenoid: 26.2 T

r irement
SAUIrements -2 2x3.5 m; 38.5 kG

Design is based on paper by Moffeit, Woods, Schuler, Moenig and Bambade (2005), SLAC-TN-05-045
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,',lE Spin Rotation — Alternatives

Example: Spin rotation at 1.7 GeV
-> less stringent requirements for solenoid

Proposal: spin rotation using Wien filter near gun
- concern: emittance blow-up

15 Section acceleration
76 MeV to 1.7 GeV

Eneigy Compression Spln Rotation

\ j’*m

5 #" LINAL (5.06GaW) .

SC eneup damp 310 Y

B x 10 MW

2" Saction
acceleration from
1.7 to 5 GeV

Spin Direction Angle =23.33 deQrees

= Longitudinal

* Transvarsa harizantal

@ Transverss vartical Spin Rotation at lower energy than the damping ring
LLVVOUD K. Moffeit, M. Woods and D. Walz, ILC-NOTE-2008-040 v



,',IE Production of Positrons

RDR
« 150 GeV electrons pass helical undulator - circularly polarized
photons

« Photons hit thin Ti alloy target - e+e- pairs

« e+ spin rotation before DR, and after DR before ML

* Minimal machine: undulator at the end of main e- linac

« Alternative scheme: photonproduction with Compton backscattering

To
150 GeV 250 GeV (o jjisions
Helical D >
Undulator
Dumps

To

125 MeV Damping
Target & (5RCI;ngV)
e
Scheme: thanks to J. Clarke Capture 400 MeV
Magnet
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| . L
H Positron polarization

» Distance between target and undulator: ~500m
* Average positron polarization >30 %
Spin rotation before/after DR is in the RDR

7] C 11 e e 1c 711 -
570 1 £ = F 18
s [ 10.9% §0.9" 10.9”
@ = T L ]
[=] - m E .
a 60k 0.8 50.8F 0.8
'06 B o o C ]
5. F 0.7 0.7
Zs0f o i
g L 0.6 0.6 0.6
“s0F
. 0.5 0.5 0.5
30 = —0.4 0.4 :0.4
. 0.3 0.3
o E0.3 ]
0.2 0.2 0.2
10 . N
- 0.1 UL =5
C | . E I I | L1 T L1 1 T 1 :X10-6
% 10 20 30 40 50 66 0 2 4 6 8 10
Positron Energy / MeV photon beam size [mrad]
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,',IE Problem: e* helicity reversal

e+ helicity flip less frequent than e- helicity reversal

e- trains - o - - - -
e+ trains + + + - - -

‘interesting’ SM processes

= 50% spent to ‘inefficient’ helicity pairing o_ . and o,, (J=0)

= Have to combine 6__, and G, _measured in different runs
with different Iumlnosmes

sk 2

=>» Large systematic uncertainties due to

=» need rapid helicity reversal also for positrons
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,',IE Spin rotation and fast flip for e+ at 5 GeV

Scheme suggested by K. Moffeit et al., SLAC-TN-05-045

Damping Ring | ..

Spin Rotation for
spin direction up

pre-accelerator
(125-400 MeV)

150 GeV e .- PPN Y
w B-figld
| b % | |
helical undulator f 1‘ \ % ¥ dump Spin Rotation for
collimator S capture RF e dump spin direction down
(upgrade) (125 MeV)

parallel spin rotation beam
lines for randomly
selecting e+ polarization;
pair of kicker magnets is

“Compton source’: turned on between pulse-trains
fast helicity flip by reversing polarization of laser

13
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,'.,IE e’ spin rotation and helicity reversal at 400 MeV

New proposal: K. Moffeit, M. Woods,Walz, ILC-NOTE-2008-040
—> spin rotation and fast helicity reversal at ~400 MeV

ip-m E'Z":Z.m After bend of 99.146 degrees
A Tansverse horzonta Pre-accelerator spins are horizontally

@ Trangverse vertical

tfransverse.

Kicker Magnetl . .
Kicker - 2 parallel lines

with solenoids to rotate
spin to the vertical

Spin Rotation for Spin Rotation for
spin direction up ./ @ spin direction down

low systematic errors <

Kicker Magnet random kicks to parallel lines

Figure 5: Layout of proposed positron spin rotation systems in the Chicane for the Pre-
accelerator. Kicker magnets and parallel spin rotator beamlines allow fast polarization
reversals for the positron beam. 14



,',IE Required precision

Physics between 200 GeV and 500 GeV
Luminosity: Year 1-4: L, = 500 fb™"
Electrons: P > 80%

Energy stability and precision below 0.1%

= ee>HZ at 350 GeV (mH=120 GeV) few 104
ee—> tt at 350 GeV 10°
ee 2 qq (uu) at 500 GeV 5-10° (1-10°)
ee > WW at 500 GeV 106

=>» statistical uncertainties at per-mille level !!

e E Lk '— 0(10-3)
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Polarimetry

» Basics

* Upstream Polarimeter
 Downstream Polarimeter

* Polarimetry with annihilation data

Details: see talks of Jenny List, Daniela Kaefer
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,',IE Polarimetry: Basics

« Compton scattering of laser photons on beam electrons or positrons
« Energy spectrum of scattered e- (e+), do/dE, depends on

 Measure asymmetry A d
o.(E)-do, (E
for scattered e+, e- AP, Pe)= (E) (E)
do(E)+do, (E)
« P=100% & A = AP (analyzing power)
Scattered Photon Energy [GaV]
250 200 150 100 50
1 K | LA BLRLREEL B IR LR IR UL BLRLLI LR IR
P, = A o F,=250 GeV
° AP P, £ 10] Wo=2.33 eV
R
o 5-
I
0 -  Pberre i s ke el AR r-**?“""'?"'_
125 150 178 200 225 750

Scottered Electron Energy
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o Upstream polarimeter

» Spectrometer chicane (4 dipoles) = energy (=position)

distribution

 position of Compton edge is indep. on E, < const. B field

? O.é — obs. asymmetry (P = 80%) B
qé statistiesFEEsra % after' '
= ddmi -
é 0
0 oF linearity: 0.1%
Tost ‘uncertamt IP =.0.25%
0 i 1 14 16 18
channel number

__‘I—lul—l total length: 74.6 m

Polarisation

=
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=7
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,',I,': Upstream polarimeter

* Polarimeter is 1.8 km upstream of IP,
offset x=1.5m wrt IP and IR magnets
« Polarization measurement before interaction

—> depolarization effects need to be calculated
— unavoidably uncertainties due to unknown beam
parameters
« Clean environment =» each bunch can be measured
— Fast: O(10%) Compton events per bunch,
small statistical error, «1% per sec
= Monitor time dependence of polarization
=>» variation in analyzing power allows internal cross checks

LCWS08 Polarization 19



,',IE Downstream polarimeter

« Same principle as upstream but measures
polarization after collisions

- have access to depolarization effects
« 2 additional dipoles

* Disrupted beam, SR (large background!!)
-> high power laser < smaller rep. rate

Energy Chicane

Polarimeter Chicane
BEWEXIF BVEEP BVEXSP BVEXLP
10 meters =105 m Z=140BE2 m T=152 550w 2=ITRBEZ ™
Cierendoow Defiechor
1ID|::m| symcfice Fageson 5 Z=-~175m

Shichdin for Cerenioa

; Defisdior 3155 mp=11.7c E

Synchrotnon Siripe Delecior 7 :
z= 147682 m x=0 y=15.3cm !

Synchmotron Stripe Debector
=147 682 x=0 y=-19.85
LCW



,',IE Downstream polarimeter

 Location: 150 meters downstream of IP; on axis with IP and IR
magnets

« Polarization measurement after beam crossing
- disrupted beam; only measurement of one/three
bunches per train for 1(3) lasers
« Depolarization of outgoing beams

» compare polarization measurement w/wo collisions
 with collisions depolarization is twice the depolarization without collisions

» can be corrected by adjusting the extraction line transfer matrix to that of
the interacting particles

» This works for (large) BMT depolarization, but not for (small) Sokolov-
Ternov depolarization

» Absolute value can be adjusted relatively easily
« Sign is more difficult and important if

— Collisions not exactly head-on

— Spins not perfectly aligned
« Studies have to be done
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,',lE Depolarization at IP

LCWS08

depolarization can occur due to
— beam-beam effects

— misalignment (e.g. ground motion induced misalignment)
— total depolarization at IP is <0.3% at 500 GeV

Precession of longitudinal spin to transverse directions

— Transverse direction shows preference to ty, but varies
train-train

— Need to understand impact on physics with transverse
beams (TGC, extra dimensions,...)

Propagate disrupted beam down to extraction line;
simulate polarization at downstream polarimeter

Need to include crab cavity, (anti)DID, and understand
impact of undulator at end of linac.... = still lot of
work to do

Further details see talk of A. Hartin
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I'IIE Depolarization in GP++

« Comparisons with CAIN, good agreement for
basic cases.

« At nominal case of the ILC total luminosity-
weighted depolarization is AP~ 0.23%£0.01 %

« Depolarization is sensitive to horizontal beam
size variations: uncertainty of 10% on
beamsize -2 uncertainty on depolarization is
larger than 20%

* Details see talk of Cecile Rimbault
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,',IE Complementarity of polarimeters

Upstream Downstream
» Clean environment * High background
» Stat. error 1% after 6us * Stat. error 1% after ~1min
» Machine tuning » Access to depolarization
(polarimeter is also at IP
upstream of tune-up
dump)

Combination
Cross checks <& redundancy for high precision

LCWS08 Polarization 24



,',IE Concerns

* Other instrumentation in the polarimeter

chicane?

* laser wire emittance diagn.,
 MPS (machine protection system) Collimator

— . 80 m -
Dipole Dipole
Dipole . Dipole
i
1 fﬂfad AR
iy __9.1?-’?--"'3' - . £ 250 GeV
— L e
o J
125 GeV 4 1
) o
. S
Collimator | | 25GeV 3
Compton IP Detector Compton IP Detector
Laser Wire Polarimeter
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,',IE Concerns (cont.)

« Scaling B field of chicane with E, and constant
dispersion of Compton electrons/positrons ?

- Uniform acceptance for all E, is lost = reduced
precision

o 2 =2 ©

= [=1 . Y - Y
E-Q Eg [ o o o
FITT I T[T [T [ T[T ITT 17T

detector acceptance(m)
~
|

3
|

=
=
[}

|

111
50 100 150 200 250 300 350 400 _ 450 _ 500

Ebeam(GeV)
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,',IE Concerns (cont.)

Scaling B, fixed dispersion?

= dispersion at high E, can blow up emittance - dispersion is
defined by emittance constraints (- maximal dispersion)

= Detector constraints (= minimal dispersion)

= dispersion for low E, is too high for laserwire detector

=» No universal dispersion for all E,

=» scaling B is in contradiction with later low energy running where
we need precise E o1
polarimetry

o
Y
N

dispersion
(=]

dispersion for fixed field

L
eare.., el

Ll L 1111 1111 1 111 IIII|IIII|IIII|IIII|IIII-T.I-.I.I-.I-
0 50 100 150 200 250 300 350 400 450 500

LCWS08 Ebeam(GeV)
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Polarimetry with annihilation data
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,',IE Blondel scheme

« Can perform 4 independent measurements (s-channel)

=0 (SM) if both beams
100% polarized

1+P. P +AgtP, =P )
:1_ Pe+ I:)e— + ALR($ Pe+ * I:)e— )

— 1
Oy =

4%Yu
1
0 _Zo-u

Tar

 determination of P,, and P, 6, and A g simultaneously
(ALR;éO); for Pe(+) = Pe('):

(6, +0 ,+0,.,+0_) (Fo,_t0o +0,, -0

et

N

- need polarimeters at IP for measuring polarization
differences between + and — helicity states
- Have to understand correlation between P (+) = P(-)
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,',IE Polarimetry with annihilation data

LCWS08

Measurement takes months at high energies !!

For threshold scans etc. statistics may not be
sufficient

Have to deliver lumi to ‘inefficient’ channels o__
and o,

have to understand correlation between P (+)
and P_(-), need the polarimeters to monitor time
dependencies

Scheme works only with e+ polarization

essential for GigaZ !
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,',IE GigaZ

* Has not highest priority in ILC schedule
 |s important for checks of

* Need all four combinations ¢, ,, o,.to
determine simultaneously A, r and effective

polarization

« Z pole calibration data may be used for
precision physics (integrated over years)

LCWS08 Polarization
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o No positron polarization....

Electron polarization only:

measurements of impossible

Include WW production — dominated by v exchange
in t-channel in forward direction

- Quasi-independent

determination of
anomalous couplings
and P,

LCWS08

o=
=<

0.6

0.4

O, ~0, [1"' ALRPe]

2 observables for 3 unknowns, independent

Left-right asymmetry for W-pair production

2 1

0.8 |-/

T KT= 1.007 1
S x, = 1.01
8 ——SM
| K. Moenig L L
-0.5 0 0.5 1



,',IE Fast flipping: s-channel A ; with pol e+ beams

Left-Right asymmetry N, —N, 1— |:>e ) |:>e .

Ar

I

N_+N, P +P. D
e e eff

Error propagation
> ARy = AR (80%,30%): F
> 4 P — P (80%,60%): F
eff

e

Measurements with equal + - and - + pairing only (no - -, no ++)

for Po,> 0: 1 N =N

enhancement ~(1+P_P_. )
- (80%, 30%): ~25% gain in stat. but add. uncertainty Ac, ~0.3*AP/P[%]
- (80%, 60%): ~50% gain in stat. but add. uncertainty Ac,~0.44-AP/P[%]
- (80%, 0%), e+ pol destroyed: add. uncertainty Ac,~0.12%
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o Conclusion for precision measurements

* Need all cross checks and redundancy to
achieve required precision for physics
measurements

- Upstream: cleanest measurement with high
time resolution

—->Downstream: access to depolarization effects
In collisions

—>annihilation data: small errors if corrections are
known from polarimeters and high statistics,
need positron polarization

- Systematic uncertainties have to be controlled
(fast helicity reversal)
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,',IE Summary

« Beam polarization and polarimetry are essential for
the physics program (precision!!)

* The baseline design provides polarized positrons
that should be used for physics

« Important: knowledge of depolarization effects

=» Polarization needs your support

All important issues were discussed on the EWPS in
Av\u-:lno :V\ 7t\| l-l-lv\l\v\- -I-If\l\ ll'l\lﬁll’\,l’\l\lﬂ IA!\IJ PN aVal 22l o aVal s
HPIIIPO i .LUULIICII, LI.IU WUIRSIIUP TlaU d bUII!lIIUII
session with the Positron Source Collaboration.

The recommendations of this workshop were sent to the
GDE (see ILC-NOTE-2008-047)
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LCWS08

Keep the initial positron polarization of 30%-45% for
physics

Implement parallel spin rotator beamlines with a
kicker system before the DR to provide rapid helicity
flipping of the positron spin

Move the pre-DR positron spin rotator system from
5GeV to 400 MeV to reduce costs

Move the pre-DR electron spin rotator system to the
source area to reduce costs

Separate the functions of the upstream polarimeter
chicane: use separate setup for MPS energy
collimator and laserwire emittance diagnostics

Polarization 36
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,'.,IE e* spin rotation and helicity reversal @ 5GeV

K. Moffeit et al., SLAC-TN-05-045 - fast reversal before DR (5 GeV)

. Kicker Magnet Spin Direction
LTR Solenoid
‘ Bend M t
en e Right Left
EE Solenoid ~3.5m Off o® o® Off @] ®
. Quadrupole Off o= *® On 1 T
On Off —
— Focus Reflector .
Reflector FOCUS 1 Quads __ Quads Positron
Quads
8 1 -— LINAC
@® e+ Solenoid e+ Bend e+ Solenoid

System 1 System Systemn 2
®
@

Positron Damping Ring
5 GeV

Bend Magnet for
Solenoid Line with

positive Field S HISOnCEIon

Solenocid Line with
positive Field

|

Spin Direction

r e

From polarized

parallel spin rotation
beam lines for randomly °

. . . Kicker for Solenoid B=-8o T Positron source
selecting e+ polarization; Line with negative e+ LTR Solenoid o TS| .
pair of kicker magnets is Line with negative K Mt 10 Feb 2005

turned on between pulse-trains
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,',IE Issues of crossing angle and DID
* Spin rotation ~ (g—2)- y-j Bdl
« Spin rotation can be up to ~100mrad if
solenoid and (anti)DID add
=>» depolarization of ~0.6%

* |If spin direction is not perfectly aligned
100mrad misalignment correspond to 1.5%
polarization error

 However: for measurements only relevant
that beam in IP and polarimeter are parallel

« Compensation scheme needed
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