Summary of Reconstruction and Simulation

'08 11/20 Y. Takubo (Tohoku U.)

Speaker list (1)

We had 5 sessions and 23 speakers.

11/17 (Mon.)

MC production for LOI

- Gabriel: "Mokka status and latest developments"
- Paulo: "Going ahead with Mokka"
- Frank: "ILD Software Status Preparations for the LOI"
- Norman: "ALCPG Software Status Preparations for the LOI"

Reconstruction improvements

- Jenny: "Kinematic Fitting in the Presence of ISR"
- Marcel: "GARLIC"
- Ron: "SiD: Separating Detector Performance from PFA Confusion"
- Taikan: "New Jet Clustering and its Performance in Physics Studies"

11/18 (Tue.)

- Rich: "SiD Track Reconstruction"
- Windfried: "Implementation and Application of Kinematic Vertex Fitting in the ILD"
- Fedor: "Performance of the Tracking Systems with the 4th Concept"
- Steve: "Tracking Studies for ILD"
- Dmitry: "Integrated Tracking Clustering Algorithm"
- Matteo: "Comparison of Central Trackers for the ILC"

Speaker list (2)

PFA & Detector optimization

11/19 (Wed.)

- Mattew: "PFA Performance for SiD"
- Tae: "PFA Implementation and Plans for Future Improvements"
- Stephen: "PFA Algorithm"
- David: "PFA Progress and ILD Detector Optimization"
- Marcel: "Detector Optimization for SiD"
- Lucie: "Multi-TeV Detector Optimization Studies for CLIC"
- Michele: "Sensitivity of Higgs self-coupling at LDC"
- Timothy: "Status of SiD Benchmarking"
- Anna: "Jet Reconstruction and Physics Performance with the 4th Concept"

MC production for LOI

ILD data production

ILD 00 (Gabriel)

SiD data production

Benchmarking Sim & Reco Summary*

Process	Gen	Sim	Reco
500_SM	_SM 7.2 M		1
500_top	500_top 2.2 M		✓
500_tau	3.2 M	1	✓
500_SUSY	_**	×	3c
500_bckgrnd	~700 k	1	✓
500_pairs	1500	****	3C
250_SM	7.9 M	1	✓
250_higgs	~250 k	1	✓

^{*} Have not completed QA for all events/files to account for crashes, etc.

^{**} Most whizard events have been generated, awaiting mixing.

^{***} Will use different field map to accurately track far-forward particles.

Reconstruction improvements

SiD track reconstruction

A new track reconstruction code in the org.lcsim framework has been developed.

Good momentum resolution everywhere!

Tracking performance for ILD

10

Pt(GeV/c)

Steve

Tracking with drift chamber

* ttbarDCH5T

ttbarDCH

ttbarSiD

Fedor

Tracking performance was studied by using simulation framework in 4th concept.

Kinematic fitting including ISR

4 Jet + Photon Hypothesis "with ISR " sample

- nice correlation between $E_{\gamma}^{\rm rec}$ and $E_{\gamma}^{\rm MC}$
- no shift in mass peak
- ▶ $\sigma_{M_{ii}}$: 3.6 GeV \rightarrow 2.6 GeV

Other reconstruction talks

 $\bar{m}_W = 80.42\,\mathrm{GeV/c}$

Fabian Moser, Wolfgang Waltenberger, Meinhard Regier, Winfried Mitaroff

Kinematic Fitting in the ILD Software Environment

PFA & Detector optimization

PFA performance for SiD

Comparison with Pandora

	org.lcsim sid02 Real tracking	org.lcsim sid02 Cheat tracking	Pandora SiDish pair A (mean)
qq 90			$\Delta E_{CM}/E_{CM} = 3.1\%$
qq I 00	$\Delta E_{CM}/E_{CM} = 3.7\%$	$\Delta E_{CM}/E_{CM} = 3.4\%$	
qq200	$\Delta E_{CM}/E_{CM} = 3.0\%$	$\Delta E_{CM}/E_{CM} = 2.8\%$	$\Delta E_{CM}/E_{CM} = 2.8\%$

So numbers are not so far apart for similar detectors.

(... but what about qq360/qq500? No SiDish data yet -- CPU time limitations.)

PFA performance for ILD

PandoraPFA and ILD

★ Results obtained with the very new Mokka model of the ILD concept

Performance (ILD)
$$Z \rightarrow d\overline{d}, Z \rightarrow u\overline{u}, Z \rightarrow s\overline{s}$$

rms90 PandoraPFA v03-B

E _{JET}	$\sigma_{E}/E = \alpha/\sqrt{E_{jj}}$ $ \cos\theta < 0.7$	σ _E /E _j
45 GeV	24.5 %	3.6 %
100 GeV	29.2 %	2.9 %
180 GeV	39.7 %	2.9 %
250 GeV	49.6 %	3.2 %

- Full G4 simulation
- "Realistic" detector, gaps etc.
 Full reconstruction inc. tracking
 Not yet optimised for ILD
- · Calibration not final
- ★ Comfortably achieve ILC "goal" of σ_E/E_j < 3.8 % over full range of jet energies of interest at a TeV collider
- ★ For lower energy jets (< 100 GeV) calorimetric resolution more important than confusion - PFA is doing its job
- ★ Current PFA code is not perfect lower limit on performance
- * Believe moderate improvements will be obtained soon for higher energy jets, "work in progress"

PFA performance at high energy

★ Study Z mass resolution as function of E_Z

(dotted histograms represent approx. W lineshape assuming same resolution)

★ Results are not unpromising

- For 500 GeV Zs resolution still good enough to separate W/Z
- For 1 TeV Zs observe significant degradation
- However, HCAL probably too thin for these energies + algorithm not optimised for very high E

rms90	PandoraPFA v03-		
Ez	σ _E /E	σ _{m/} m	
125 GeV	2.4 %	2.7 %	
250 GeV	2.5 %	3.1 %	
500 GeV	3.1 %	4.1 %	
1 TeV	4.2 %	6.2 %	
1.5 TeV	5.6 %	8.2 %	

Conclude: PFA not ruled for a 3 TeV collider detector

Optimization study for SiD

Making SiD02

	sid01	sid02-stretch	sid02
ECAL inner radius (m)	1.25	1.25	1.25
ECAL inner Z (m)	1.7	2.1	1.7
HCAL depth (λ _{iron})	4	4.5	4.5
HCAL layers	34	40	40
B Field	5	5	5

- Two versions proposed for sid02
 - standard
 - stretched
- · Standard sid02 was chosen for LoI

Benchmark physics studies at SiD

Status of SiD Benchmarking for LOI

#	\sqrt{s} (GeV)	Final State	Institution		Fraction of Work Completed			
			Stdhep	Analysis	Stdhep	Geant4	Reco	Analysis
1	250	e^+e^-H	SLAC	SLAC	0.3	0.3	0.3	0.9
1	250	$\mu^+\mu^-H$	SLAC	SLAC	0.3	0.3	0.3	0.9
2	250	$vvH \rightarrow vvc\overline{c}$	SLAC	Oxford	1.0	1.0	1.0	0.4
3	250	$qqH \rightarrow qqc\overline{c}$	SLAC	Oxford	1.0	1.0	1.0	0.2
2	250	$vvH \rightarrow vv\mu^{\dagger}\mu^{-}$	SLAC	RAL	1.0	1.0	1.0	0.6
3	250	$qqH \rightarrow qq\mu^{+}\mu^{-}$	SLAC	RAL	1.0	1.0	1.0	0.6
4	500	$ au^+ au^-$	DESY	Stonybrook	1.0	1.0	1.0	0.1
5	500	tī	SLAC	Oxford	1.0	1.0	1.0	0.9
6	500	$\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{}, \tilde{\chi}_2^{} \tilde{\chi}_2^{}$	DESY	Oxford	0.9	0.0	0.0	0.2
_	250	SM bkgd	SLAC		1.0	1.0	1.0	-
-	500	SM bkgd	SLAC		1.0	1.0	1.0	-

Jet reconstruction & Physics performance at 4th

Higgs self coupling at ILD

Royal Holloway University of London

NN result

The two networks give similar results:

-2 Var.: S/√(S+B) = 0.57 ± 0.06

-3 Var.: S/√(S+B) = 0.54 ± 0.06

B-tagging crucial for the analysis

Analysis	S/√(S+B)	S	В
Simple χ2	0.36 ± 0.01	13.5	1364.5
χ2 with b tag term	0.55 ± 0.06	4	47
χ2 with b tag term and kin. fit.	0.56 ± 0.06	6.4	124.4
NN two variables	0.57 ± 0.06	5.8	99.2
NN three variables	0.54 ± 0.06	7.5	186

• The resolution ($\frac{\sqrt{S+B}}{S}$) to such process is 180%

Other PFA & Detector optimization talks

Muon Efficiency

Preselection : $cos(\theta) < 0.95$, P > 2GeV

Sample	Cheate	er track	Full			
(1000events)	Purity	Efficiency	Purity	Efficiency	MC	
ttbar (500GeV)	513(88%)	583(51%)	476(84%)	565(49%)	1143	
higgs (250GeV)	327(93%)	350(57%)	313(91%)	345(56%)	615	

Possible future CLIC R&D

- Time stamping. Develop specific layers in tracker and calorimeter to reject background events from other bunches crossings (0.5 ns separation).
- High-field solenoid conductor. Replacement of the pure aluminum coil stabilizer and replacement of the electron beam welding.
- Mechanical engineering support. Integration, heavy HCAL, coil, stability issues, etc.
- Alternative to PFA calorimetry (e.g. dual readout calorimetry with crystal fibres).
- Synergy of R&D (approved CERN) between LC and SLHC for ondetector powering and for integrated silicon pixel detectors

To be carried out in collaboration with CERN and outside institutes Lucie

Stephen

Summary

- MC production of benchmark processes is ongoing for physics study in LOI.
- Many modifications of the reconstruction method was reported. They will contribute improvement of physics measurement.
- The optimization procedures of the detector design was shown. The geometries of all the detector concepts were determined based on measurement performance.
- Physics benchmarks were well studied towards LOI at all the concept groups. We will be able to see excellent results in LOI.