Tracking with the Hough transform

Felix Fehr LPC Clermont-Ferrand

CALICE Collaboration Meeting
UT Arlington
March 10th, 2010

Motivation

- Develop MIP ID and tracking algorithm
 - to check data quality, in particular to study impact of overlay events (e.g. π +e) on electron analysis
 - to address tracking capabilities of calorimeter (can provide benchmark for further studies)
 - for calibration purposes

- Algorithm should be
 - robust, fast, and not too complicated
 - applicable for Si-W ECAL and potentially also be useable for HCAL without too many modifications

The Hough transform

- Identifies general curves/surfaces
 - robust, fast, yet simple algorithm
 - Paul V.C. Hough, US Patent, 1962
- Look at (x,z) and (y,z) projections: straight lines in 2D
- Definition of Hough space

$$\rho = x \sin \theta + z \cos \theta$$

: distance of line to origin

: angle between foot of normal and z-axis

(analogue definitions for (y,z))

Principle of the HT

- Hough transform of a point given by sinoidal function
- In Hough space, transforms of points on a line intersect at line parameters

Hit filtering and weighting

- Select MIP compatible hits: select cells with no more than 1.5 of average energy induced by MIP
- Identify isolated hits (no more than 2.0 MIPs within r=2cm in same layer)
- Amplify MIP signals with layer dependent weights:

Hit type	Layer 1-5	Layer 6-25	Layer 26-30
isolated	4	3	4
isolated and connected	3	2	3
isolated and connected to isolated	2	1	2

Transformation & peak detection

For each hit: vary heta \in $[0,2\pi]$ and calculate ho

$$\rho = y \sin \theta + z \cos \theta$$

Gerig and Klein post-processing

useful for 'busy' events

• allows each hit only one vote: each hit (y,z) votes for the maximum in (ρ,θ) with $\rho = y \sin \theta + z \cos \theta$

Generalisation of post-processing

Basic idea: allow each hit (x,y,z) to vote for only one (!) $(\rho_x,\theta_x,\rho_y,\theta_y)$ combination

- combines 2D x 2D information, yields track parameters
- exploits fact that signals in (ρ_x, θ_x) also peak in (ρ_y, θ_y) : each hit is associated with only one 3D track
- improves suppression of ghost solutions
- seems to be a new approach

Maxima in $(\rho_x, \theta_x, \rho_y, \theta_y)$ detected with cluster algorithm Final chi2 fit of 3D track to selected hits (not essential, used as a cross-check)

The overlay sample

- 30 GeV electrons in SiW ECAL overlayed with MIPs
 - 10.000 events (1 e + 1 MIP per event) generated
 - simulation of electron / MIP separately with Mokka
 - event merging with LCIO tools
 - full hit info available (parent ID stored)

"Beam profile"

generated beam profile should reflect experimental conditions

reconstruction can be quite challenging if MIP and shower are very close

Example event

- muon-induced hits
- electron-induced hits
- cells with mu/e signals

red: hits selected by algorithm

muon track nicely identified

Detection efficiency

Overall (event-wise) detection efficiency defined by

$$E = \frac{num. of \ detected \ MIP \ overlays}{num. of \ generated \ events}$$

 Detection efficiency w/o any requirements (remember 5% of MIPs are almost undetectable)

$$E = 75 \%$$

Hit selection efficiency and purity

num. of selected MIP cells true num. of cells with MIP signals

 $p = \frac{num.of\ selected\ MIP\ cells}{num.of\ selected\ cells}$

Very high purity, good efficiency

Shower / MIP distance

- MIP ID / tracking quality depends on shower / MIP distance
- use fraction of common cells (or proximity) to describe performance:

$$\kappa = \frac{num.of\ cells\ with\ MIP \land shower\ signals}{num.of\ cells\ with\ MIP\ signals}$$

MIP and shower completely separated at k = 0

MIP completely hidden in shower if k = 1

Detection efficiency

 $E = \frac{num. of \ detected \ MIP \ overlays}{num. of \ generated \ events}$

- At 50 % contamination still 70 % detection efficiency
- Dip at k=0 caused by undetectable muons (nhit < 10)

Hit selection efficiency and purity

Average efficiency vs. proximity

Average purity vs. proximity

$$\epsilon = \dfrac{$$
 num. of selected MIP cells true num. of cells with MIP signals

$$p = \frac{num.of\ selected\ MIP\ cells}{num.of\ selected\ cells}$$

Application to test beam data

Algorithm can now be used to clean test beam data:

Summary and outlook

- Tracking algorithm based on Hough transform:
 - ~ 75% detection efficiency for overlay sample
 - high hit selection purities (> 90%) can be achieved while keeping good hit selection efficiency (~ 75%)
 - fraction of common hits useful for characterisation

Status / plans:

- work on algorithm (almost) finished
- polish plots by adding more statistics
- Analysis Note ($\sim 10\text{-}15$ pages) in preparation will include a study of overlay impact on e-analysis