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αs

TB and M.D. Schwartz, JHEP 0807:034,2008



pencil-like planar spherical

EVENT-SHAPE VARIABLES

Parameterize geometric properties of energy and 
momentum flow in high energy collisions.

Inclusive observables: can be calculated in 
perturbation theory, hadronisation effects are 
suppressed at high energy.

Canonical event shape is thrust T
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MEASUREMENTS OF THRUST

Based on 300’000 events. Similar precision by the 
other LEP experiments.
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USE OF EVENT SHAPES

QCD studies
convergence of perturbation theory, validation of 
shower MCs, studies of hadronisation effects

Measurement of SM parameters
strong coupling constant       with 
top-mass with                     → Sonny Mantry’s talk

Discrimination against background
e.g. identification of energetic hadronic top-jets 

Search for new physics
e.g. search for light gluinos 

αs e+e− → qq̄

e+e− → tt̄



EVENT SHAPES AT THE ILC

At design luminosity, the ILC produces  few hundred 
thousand                     events/year

Statistical uncertainties on extracted value of       is 
below 0.5%.
Systematic uncertainties are expected to be ~ 1%

“contamination” from
 luminosity spectrum

Note: hadronisation effects scale as ~1/Ec.m. and are 
thus smaller than at LEP

can be further constrained by varying Ec.m.

e+e− → qq̄

αs

e+e− →
(
tt̄, W+W−, ZZ

)Schumm ’96 & Truitt ’01; Burrows ‘01  



EVENT SHAPES AT NNLO

After years of work, the NNLO calculation of e+e- → 
3 jets has been completed.

First time a subtraction scheme has been 
implemented at NNLO.

Real and virtual contributions are have collinear and 
soft divergences which cancel in the sum.

Implemented in fixed order event generator. Can be 
used for NNLO evaluation of event shapes.

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich ‘07

+ + + ...

http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2DDe%20Ridder%2C%20A%2E%22
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http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2C%20T%2E%22
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Perturbative uncertainty dominates.  At NNLO

Abstract: We present the first determination of the strong coupling constant from a fit of

next-to-next-to-leading order QCD predictions to event-shape variables, measured in e+e−

annihilations at LEP. The data have been collected by the ALEPH detector at centre-of-

mass energies between 91 and 206 GeV. Compared to results of next-to-leading order fits

we observe that the central fit values are lower by about 10%, with considerably reduced

scatter among the results obtained with different event-shape variables. The dominant

systematic uncertainty from renormalization scale variations is reduced by a factor of two.

By combining the results for several event-shape variables and centre-of-mass energies, we

find

αs(M2
Z) = 0.1240 ± 0.0008 (stat) ± 0.0010 (exp) ± 0.0011 (had) ± 0.0029 (theo).

Keywords: QCD, Jets, LEP Physics, NLO and NNLO Computations, strong coupling

constant.

      FROM EVENT SHAPES AT LEP I
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RESUMMATION

All-order formalism for resummation of thrust 
distribution

N3LL resummation

Comparison with fixed order
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LOGARITHMICALLY ENHANCED CONTRIBUTIONS

The LO thrust distribution has the form
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singular terms
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SINGULAR TERMS DOMINATE

Singular terms are predicted (and later resummed to all 
orders) using Soft-Collinear Effective Theory.
Regular terms (difference of blue and red) are added back 
after resummation.
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RESUMMATION: THE TRADITIONAL WAY

Logarithmically enhanced contributions lead to slow 
convergence of perturbation theory
The leading logarithms (LL)                and next-to-
leading log’s (NLL)                    can be resummed 
using the “coherent branching algorithm”

αn
s ln2n τ

αn
s ln2n−1 τ

M2
1 M2

2

Q2

τ =
M2

1 + M2
2

Q2

Catani, Trentadue, Turnock, Webber ‘93

NLL+NNLO calculation by T. Gehrmann, G. Luisoni and H. Stenzel, arXiv:0803.0695,



Using Soft Collinear Effective Theory (SCET), one 
can show that for τ → 0 the rate factorizes as

Three relevant scales:
         Q2          ≫    M12 ~ M22 ~ τ Q2   ≫   τ2Q2

        hard                      jet                   soft
     

EFFECTIVE THEORY RESUMMATION

1
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dσ

dτ
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∫
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∫
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1 , µ) J(M2
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2

Q
,µ)

Fleming, Hoang, Mantry and Stewart ’07
Schwartz ’07
see also: Korchemsky ’98; Berger, Kucs, 
Sterman ‘03



The presence of the three separated scales leads to 
large perturbative logarithms.

Any choice of µ will produce large logarithms in 
either H, J or S.

H and J are Wilson coefficients in SCET, S a matrix 
element,

fulfill renormalization group equation.

RESUMMATION
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RESUMMATION BY RG EVOLUTION

Evaluate each part at its characteristic scale, evolve to 
common scale:

J(µi)

µ

Q H(µh)

√
Q2τ

Qτ ST (µs)
evolution automatically 

resums log’s of scale ratios



    and      are Laplace transforms of J and ST

U is an evolution factor from solving RG eq’s                            
For N3LL resummation, we need:

4-loop Γcusp  (use Pade approx. for 4-loop term),
3-loop  γ’s,
2-loop          and    .

RESUMMED THRUST DISTRIBUTION

1
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All ingredients known except
2-loop soft function.

Obtain it numerically using EVENT2H, j̃ s̃

j̃ s̃T



NNLO SINGULAR TERMS

With 2-loop H, J and S and 3-loop anomalous 
dimension we predict all singular terms at αs3.
For small τ singular terms dominate full result: check 
of NNLO calculation of Gehrmann et al.
In our paper arXiv:0803.0342, we found disagreement 
at small τ values in 2 color structures.
In arXiv:0807.3241 Stefan Weinzierl identified a soft 
divergence in one of the subtraction terms used by 
Gehrmann et al. 

Affects thrust at small τ. New numerical results for 
thrust by Weinzierl and by Gehrman et al. should 
soon be available.



NNLO SINGULAR TERMS

Nice agreement with preliminary corrected results 
obtained from T. Gehrmann (thanks!)

Note: correction only affects region of very small τ
Should have negligible impact on αs extraction.
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INDIVIDUAL COLOR STRUCTURES: SMALL τ
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Figure 1: Contributions to the three-loop coefficients of the thrust distribution. The plots show
a comparison of our result for the singular terms (blue lines) with the numerical evaluation
of the full result (red histograms) [?]. The dotted, dashed and solid lines correspond to an
infrared cut-off y0 = 10−5,10−6 and 10−7, see [?]. The light-red areas are an estimate of the
statistical uncertainty.
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Nice agreement with preliminary corrected results 
obtained from T. Gehrmann

Note: only the Nc2 and Nc0 color structures are affected

LEADING COLOR STRUCTURE
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Figure 1: Contributions to the three-loop coefficients of the thrust distribution. The plots show
a comparison of our result for the singular terms (blue lines) with the numerical evaluation
of the full result (red histograms) [?]. The dotted, dashed and solid lines correspond to an
infrared cut-off y0 = 10−5,10−6 and 10−7, see [?]. The light-red areas are an estimate of the
statistical uncertainty.
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a comparison of our result for the singular terms (blue lines) with the numerical evaluation
of the full result (red histograms) [?]. The dotted, dashed and solid lines correspond to an
infrared cut-off y0 = 10−5,10−6 and 10−7, see [?]. The light-red areas are an estimate of the
statistical uncertainty.
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MATCHING

Will now combine resummation and fixed order result 
to obtain αs from a fit to LEP data.
Different possibilities, we use

note: previous speaker G. Luisoni used NLL+NNLO

order Γcusp γH/J/S H , j̃, s̃T β
fixed-order logarithmic

matching accuracy

1storder 2-loop 1-loop tree 2-loop – NLL

2ndorder 3-loop 2-loop 1-loop 3-loop LO NNLL

3rdorder 4-loop 3-loop 2-loop 4-loop NLO N3LL

4thorder 4-loop 3-loop 3-loop 4-loop NNLO N3LL

Table 1: Definition of orders in perturbation theory
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with η = 4AΓ(µj, µs). From this final result we can read off the canonical relations among the
hard, jet, and soft matching scales and the physical scales Q and p ∼

√
τQ:

µh = Q , µj =
√

τQ , µs = τQ . (25)

Note that the arbitrary reference scale µ has dropped out completely.
For the αs fits, we need the differential thrust distribution integrated over each bin. The

integral of the thrust distribution can be evaluated analytically, since the derivatives with
respect to η in (24) commute with the integration over τ . The resulting expression is
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Note that the integral is performed for fixed µj and µs, that is, before setting them to their
canonical τ -dependent values. In this way, large logarithms are removed in the observable of
interest, not for some intermediate expression.

Different definitions of logarithmic accuracy are commonly used in the literature. Before
proceeding further, we now show which logarithms are included at a given order in our calcu-
lation. We use renormalization-group improved perturbation theory, in which logarithms of
scales are eliminated in favor of coupling constants at different scales which are counted as
small parameters of the same order
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RESUMMED VS. FIXED ORDER

For PDG value αs(MZ)=0.1176.
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RESUMMED VS. FIXED ORDER

For PDG value αs(MZ)=0.1176

This is the region relevant for αs determination
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PHENOMENOLOGICAL APPLICATIONS

Determination of αs 

Scale variation, error band method

Fit to ALEPH and OPAL LEP data

Bound on light gluinos Kaplan and Schwartz ‘08

Comparison with event generator results at ILC 
energies



We will assess the perturbative uncertainty in the 
standard way, by varying the renormalization (resp. 
matching) scales.

To the order of the calculation, the cross section is 
independent of these scales; 
variation then is a measure of unknown higher order 
terms.

We have four scales
µhard2 ~ Q2      : scale at which H is evaluated
µjet2 ~ τ Q2     : scale at which J is evaluated
µsoft2 ~ τ2 Q2 : scale at which ST is evaluated
µmatch2          : scale of the regular terms

THEORETICAL UNCERTAINTY



 

INDEPENDENT SCALE VARIATION

Varying jet and soft scale independently by a factor 2 makes no 
sense at moderate τ (leads to µsoft > µjet, etc.), overestimates the 
uncertainty.
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JET AND SOFT SCALE VARIATION

Instead of independently varying the jet and soft scales, we 
vary as follows

correlated: µjet→ α µjet,  µsoft → α µsoft  with  1/2 < α < 2
squeeze: µjet→ √α µjet,  µsoft → α µsoft  with  1/√2 < α < √2
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ERROR BAND METHOD

Perform χ2-fit to the data, extract best-fit value of αs. Calculate 
maximum deviation from default distribution: “error band”.

To get theoretical uncertainty, calculate max. and min. αs for 
which theoretical distribution lies inside the error band.
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EXPERIMENTAL UNCERTAINTY

OPAL ’05 and ALEPH ‘03 give results for binned thrust 
distributions. Do not provide correlations.
Put only stat. err. in our χ2-fit. For each Q, use same fit ranges as exp. 
paper and use their systematic uncertainties.
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FIT RESULT
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Figure 10: Best fit values for αs(mZ). From right to left the lines are the total error bars at
each energy for first order, second order, third order and fourth order, as defined in the text.
The bands are weighted averages with errors combined from all energies.

between the systematical uncertainties among the two experiments. For the hadronization
and perturbative error, we assume 100% correlation. Proceeding in this way, we find

αs(mZ) = 0.1172 ± 0.0010(stat) ± 0.0008(sys) ± 0.0012(had) ± 0.0012(pert)

= 0.1172 ± 0.0022 . (39)

This result is close to the PDG world average αs(mZ) = 0.1176 ± 0.0020 and has similar
uncertainties.

It is interesting to repeat the fit order by order. This is done in Table 4 and displayed
graphically in Figure 10. The figure shows that the results found at different energies are
consistent and illustrates the reduction of the uncertainty when including higher order terms.

5 Non-perturbative effects and power corrections

Now, let us turn to the non-perturbative effects. The effective theory calculation corresponds
to a parton-level distribution, while the experimental data involves hadrons. Because thrust
is an infrared-safe observable, the hadronization corrections are expected to be suppressed,
however they may not be negligible.

In a fixed-order calculation, one normally corrects the theoretical prediction with a parton-
to-hadron transfer matrix derived from a Monte Carlo event generator. Then the uncertainty is
calculated by comparing the output of different generators. This procedure is clearly not ideal,
since the event generators have been tuned to the same lep data we are trying to reproduce!
The situation is especially problematic when trying to correct our resummed distribution.
The Monte Carlo generators are all based on the parton-shower approximation, which only
sums the leading Sudakov double logarithms and part of the next-to-leading logarithms. In
contrast, our distribution is correct to N3LL and to NNLO in fixed-order perturbation theory.
By tuning to data, part of the missing higher order perturbative corrections get absorbed
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BOUND ON LIGHT GLUINOS

Gluinos would affect H, J and S functions at the two-
loop level.  Leading effect is Δnf  =3

in hard function H if                ,  
in jet function J  if                      ,
in soft function S if                  ,
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FIG. 1: Theoretical prediction versus aleph data at lep 1
for the standard model and the standard model with a 25
GeV gluino. The total statistical uncertainty band includes
theoretical statistical uncertainty from the Monte Carlo used
to generate the NNLO fixed-order thrust distribution.

models are shown in Figure 1, where it is clear that the
model with the gluino is systematically worse.

To properly scan over masses, we must specify how
to handle the thresholds. First, consider the total
hadronic cross section, σhad. The exact leading or-
der dependence of σhad on the new particle mass can
be extracted from [28]. For m < µ, the contribution
to the total cross section is proportional to ∆σhad =

α2
s(µ)

(
ρV (m2

Q2 ) + ρR(m2

Q2 ) + 1

4
log(m2

µ2 )
)
, where ρV is the

virtual contribution which vanishes at m = ∞ and ρR

is the real emission contribution which vanishes for m >
Q/2. The explicit log compensates the µ-dependence of
αs and is necessary to have a smooth m → 0 limit. We
will use this exact expression ∆σhad for the new physics
contribution to σhad in Eq. (1), but observe that, as
shown in [28], it is well approximated for 0 < m < Q
by the leading power in m2/Q2. Actually, it is not
clear whether the experiments would have included de-
cay products of real gluinos in their event selection for the
thrust distribution, so in the spirit of providing a model-
independent bound, we allow ∆σhad to scan between 0
and the cross section for ∆nf additional massless fla-
vors. This variation is included in the uncertainty band
described below.

The exact contributions of massive colored states to
the jet, soft, and hard functions are not known, but since
the same loops and real-emission diagrams are relevant
for them as for ∆σhad, it is likely that the result would
be similar to that of ∆σhad. Thus, we assume the leading
power is linear in m2/µ2

h for the hard function, m2/µ2
j for

the jet function, and m2/µ2
s for the soft function. That is,

we take H, j̃ and s̃ to interpolate between the expression
for nf = 5 + ∆nf flavors at m = 0 and nf = 5 flavors
at the relevant threshold. This removes any remaining
discontinuity in the thrust distribution, and should be a
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FIG. 2: Bounds on light colored particles from lep data. The
darker region is completely excluded at 95% confidence. The
lighter region is an uncertainty band including estimates of
various theoretical uncertainties.

good approximation to the (unknown) exact result. In
a similar vein, the matching correction, r(τ) in Eq. (2),
formally takes place at the hard scale Q. However, it
depends on nf and would be discontinuous as m crosses
Q unless the discontinuity is removed by inclusion of ex-
plicit mass corrections. We use an interpolation also lin-
ear in m2/Q2 for this effect. Using this model for the
mass thresholds, in lieu of the exact result, introduces
some theoretical uncertainty. To account for that un-
certainty, we explore some variations of the model and
include the errors in our final bound, as described below.

With this treatment of the threshold effects, the thrust
distribution is smooth and can be compared with the
data for each m and ∆nf . We perform a combined fit to
the aleph [22] and opal [24, 25] data sets from 91.2−206
GeV [26, 27]. The fit regions used are 0.1 < τ < 0.24
for lep 1 , and 0.04 < τ < 0.25 for aleph lep 2 and
0.05 < τ < 0.22 for opal lep 2 . The data are cor-
rected bin-by-bin for hadronization and bottom/charm
mass effects using pythia. We perform a least-squares
fit of the theoretical prediction to the corrected data, us-
ing errors which include both the experimental statistical
errors and the statistical errors of the NNLO fixed-order
calculation, rescaled by 1.5, as described above. For the
standard model, the χ2 is 85.7 for 78 degrees-of-freedom.
For each value of m and ∆nf , we minimize χ2 and com-
pute the maximum likelihood ratio as compared with the
standard model. The resulting 95% C.L. bound is shown
in Figure 2. For ∆nf = 3, the limit is meg > 52.5 GeV.
For a real gluino (with the appropriate group theory fac-
tors differing from ∆nf = 3 at higher orders), the bound
differs by 0.03 GeV.

To account for the theoretical uncertainty, we include
an uncertainty band (the light shaded region in Figure 2).
This subsumes the following variations: (i) Removing
the lowest bins from each data set in the fit. (ii) Not
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to generate the NNLO fixed-order thrust distribution.

models are shown in Figure 1, where it is clear that the
model with the gluino is systematically worse.

To properly scan over masses, we must specify how
to handle the thresholds. First, consider the total
hadronic cross section, σhad. The exact leading or-
der dependence of σhad on the new particle mass can
be extracted from [28]. For m < µ, the contribution
to the total cross section is proportional to ∆σhad =

α2
s(µ)

(
ρV (m2

Q2 ) + ρR(m2

Q2 ) + 1

4
log(m2

µ2 )
)
, where ρV is the

virtual contribution which vanishes at m = ∞ and ρR

is the real emission contribution which vanishes for m >
Q/2. The explicit log compensates the µ-dependence of
αs and is necessary to have a smooth m → 0 limit. We
will use this exact expression ∆σhad for the new physics
contribution to σhad in Eq. (1), but observe that, as
shown in [28], it is well approximated for 0 < m < Q
by the leading power in m2/Q2. Actually, it is not
clear whether the experiments would have included de-
cay products of real gluinos in their event selection for the
thrust distribution, so in the spirit of providing a model-
independent bound, we allow ∆σhad to scan between 0
and the cross section for ∆nf additional massless fla-
vors. This variation is included in the uncertainty band
described below.

The exact contributions of massive colored states to
the jet, soft, and hard functions are not known, but since
the same loops and real-emission diagrams are relevant
for them as for ∆σhad, it is likely that the result would
be similar to that of ∆σhad. Thus, we assume the leading
power is linear in m2/µ2

h for the hard function, m2/µ2
j for

the jet function, and m2/µ2
s for the soft function. That is,

we take H, j̃ and s̃ to interpolate between the expression
for nf = 5 + ∆nf flavors at m = 0 and nf = 5 flavors
at the relevant threshold. This removes any remaining
discontinuity in the thrust distribution, and should be a
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good approximation to the (unknown) exact result. In
a similar vein, the matching correction, r(τ) in Eq. (2),
formally takes place at the hard scale Q. However, it
depends on nf and would be discontinuous as m crosses
Q unless the discontinuity is removed by inclusion of ex-
plicit mass corrections. We use an interpolation also lin-
ear in m2/Q2 for this effect. Using this model for the
mass thresholds, in lieu of the exact result, introduces
some theoretical uncertainty. To account for that un-
certainty, we explore some variations of the model and
include the errors in our final bound, as described below.

With this treatment of the threshold effects, the thrust
distribution is smooth and can be compared with the
data for each m and ∆nf . We perform a combined fit to
the aleph [22] and opal [24, 25] data sets from 91.2−206
GeV [26, 27]. The fit regions used are 0.1 < τ < 0.24
for lep 1 , and 0.04 < τ < 0.25 for aleph lep 2 and
0.05 < τ < 0.22 for opal lep 2 . The data are cor-
rected bin-by-bin for hadronization and bottom/charm
mass effects using pythia. We perform a least-squares
fit of the theoretical prediction to the corrected data, us-
ing errors which include both the experimental statistical
errors and the statistical errors of the NNLO fixed-order
calculation, rescaled by 1.5, as described above. For the
standard model, the χ2 is 85.7 for 78 degrees-of-freedom.
For each value of m and ∆nf , we minimize χ2 and com-
pute the maximum likelihood ratio as compared with the
standard model. The resulting 95% C.L. bound is shown
in Figure 2. For ∆nf = 3, the limit is meg > 52.5 GeV.
For a real gluino (with the appropriate group theory fac-
tors differing from ∆nf = 3 at higher orders), the bound
differs by 0.03 GeV.

To account for the theoretical uncertainty, we include
an uncertainty band (the light shaded region in Figure 2).
This subsumes the following variations: (i) Removing
the lowest bins from each data set in the fit. (ii) Not
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COMPARISON WITH PYTHIA

hadronic Pythia agrees perfectly with the ALEPH data
partonic Pythia does much better than NLL
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1 TEV LEPTON COLLIDER

Partonic Pythia now looks much more NLL like.
Will need to retune (or redesign) the shower.

Can tune partonic shower to our theoretical prediction. 
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1 TEV LEPTON COLLIDER

Partonic Pythia now looks much more NLL like.
Will need to retune (or redesign) the shower.

Can tune partonic shower to our theoretical prediction. 
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Figure 12: Comparison of predictions for the all-particle 1−thrust event-shape distribution at
LEP1 and TeV energies; black and green lines represent theoretical results at N3LL+NNLO and
NLL accuracy, respectively, both of which taken from [88], red and blue histograms show the dipole-
shower results with and without hadronization corrections, respectively.

emissions can be seen as a consequence of exponentiating the eikonal rather than the

collinear limit of QCD radiation. The predictions for hard emissions agree somewhat worse

with the data. The last two bins of the 1−thrust distribution are overestimated signalling

a slight excess of spherical events, whereas thrust minor is underestimated for high values.

Recently Becher and Schwartz — using soft-collinear effective theory — calculated the

all-particle 1−thrust distribution at next-to-next-to-next-to-leading logarithmic (N3LL)

accuracy [88]. They also matched their resummed result to the fixed-order prediction at

NNLO [89, 87]. Figure 12 shows the comparison of their result with the parton-level predic-

tion of the dipole shower. This provides an independent stringent test of the resummation

(perturbative expansion) encoded in the dipole shower Monte Carlo without relying on

hadronization corrections. The agreement with the N3LL+NNLO curve is remarkable and

considerably better w.r.t. the prediction given by the NLL resummation, also depicted in

figure 12. The good behaviour persists at large centre-of-mass energies (see second panel

of figure 12). Interestingly, the agreement found here is better than that found when

comparing the analytic results to Pythia [88].

The plots also visualize the hadronization corrections to the perturbative dipole-shower

prediction, which have the expected characteristics. They shift the distribution to larger 1−
T values, and become less important for smaller thrust and higher centre-of-mass energies.

Taken together, the agreement with data and the comparison to the analytic resum-

mation calculation of [88] is satisfactory. This allows to conclude that the final-state piece

of the dipole shower is well under control.

8.2 Inclusive production of Drell-Yan lepton pairs at hadron colliders

In the scope of hadronic collisions, the processes pp(pp̄) → Z0/γ∗ → e+e− constitute the

simplest and cleanest testbed for the further validation of the dipole shower as they form
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New dipole shower by Krauss and Winter ‘08 
gives better agreement 

J
H
E
P
0
7
(
2
0
0
8
)
0
4
0

Dipole shower & Py6.2 hadr.NLL Dipole showerNNNLL+NNLO

Q!MZ

0.00 0.05 0.10 0.15 0.20

0

5

10

15

20

1"T

1 Σ

d
Σ

d
$!
1
"
T
"

Q!1TeV

0.00 0.01 0.02 0.03 0.04 0.05

0

10

20

30

40

50

1"T

1 Σ

d
Σ

d
$!
1
"
T
"

Figure 12: Comparison of predictions for the all-particle 1−thrust event-shape distribution at
LEP1 and TeV energies; black and green lines represent theoretical results at N3LL+NNLO and
NLL accuracy, respectively, both of which taken from [88], red and blue histograms show the dipole-
shower results with and without hadronization corrections, respectively.
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a slight excess of spherical events, whereas thrust minor is underestimated for high values.
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accuracy [88]. They also matched their resummed result to the fixed-order prediction at

NNLO [89, 87]. Figure 12 shows the comparison of their result with the parton-level predic-

tion of the dipole shower. This provides an independent stringent test of the resummation

(perturbative expansion) encoded in the dipole shower Monte Carlo without relying on
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considerably better w.r.t. the prediction given by the NLL resummation, also depicted in
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of figure 12). Interestingly, the agreement found here is better than that found when

comparing the analytic results to Pythia [88].

The plots also visualize the hadronization corrections to the perturbative dipole-shower

prediction, which have the expected characteristics. They shift the distribution to larger 1−
T values, and become less important for smaller thrust and higher centre-of-mass energies.

Taken together, the agreement with data and the comparison to the analytic resum-

mation calculation of [88] is satisfactory. This allows to conclude that the final-state piece

of the dipole shower is well under control.

8.2 Inclusive production of Drell-Yan lepton pairs at hadron colliders
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Figure 12: Comparison of predictions for the all-particle 1−thrust event-shape distribution at
LEP1 and TeV energies; black and green lines represent theoretical results at N3LL+NNLO and
NLL accuracy, respectively, both of which taken from [88], red and blue histograms show the dipole-
shower results with and without hadronization corrections, respectively.

emissions can be seen as a consequence of exponentiating the eikonal rather than the

collinear limit of QCD radiation. The predictions for hard emissions agree somewhat worse

with the data. The last two bins of the 1−thrust distribution are overestimated signalling

a slight excess of spherical events, whereas thrust minor is underestimated for high values.

Recently Becher and Schwartz — using soft-collinear effective theory — calculated the

all-particle 1−thrust distribution at next-to-next-to-next-to-leading logarithmic (N3LL)

accuracy [88]. They also matched their resummed result to the fixed-order prediction at

NNLO [89, 87]. Figure 12 shows the comparison of their result with the parton-level predic-

tion of the dipole shower. This provides an independent stringent test of the resummation

(perturbative expansion) encoded in the dipole shower Monte Carlo without relying on

hadronization corrections. The agreement with the N3LL+NNLO curve is remarkable and

considerably better w.r.t. the prediction given by the NLL resummation, also depicted in

figure 12. The good behaviour persists at large centre-of-mass energies (see second panel

of figure 12). Interestingly, the agreement found here is better than that found when

comparing the analytic results to Pythia [88].

The plots also visualize the hadronization corrections to the perturbative dipole-shower

prediction, which have the expected characteristics. They shift the distribution to larger 1−
T values, and become less important for smaller thrust and higher centre-of-mass energies.
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SUMMARY

Have used effective field theory methods to resum thrust 
distribution to N3LL.

Traditional method works only up to NLL.
Logarithmically enhanced contributions dominate. Have 
evaluated all singular terms at αs3.

Check of NNLO calculation of e+e- → 3 jets.
Also other event shapes can be improved beyond NLL 

Extract αs from a fit to LEP data:

Most precise determination of αs at high energies, agrees well 
with low energy determinations.
Theoretical accuracy matches exp. precision at the ILC

Since neither Monte-Carlo hadronization corrections nor the simple non-perturbative shift
model are satisfactory, we have not included hadronization corrections in our fit. To account for
the resulting uncertainty, we simply take the hadronization uncertainties from previous studies
of the aleph and opal data. To see the effect of not correcting the data, we performed a fit
to the fixed-order NNLO calculation to the aleph data at 91.2 GeV without correcting it for
hadronization. We find a best fit value αs(mZ) = 0.1275, which agrees almost exactly with the
value αs(mZ) = 0.1274 found in [5] with the same data and numerical NNLO simulation but
after hadronization and mb corrections were included. Although these corrections separately
are of the order of a per cent, they seem to pull in opposite directions and cancel out in the
final result. Thus, including both may have a small effect on our result as well.

6 Conclusions

We have resummed the leading logarithmic corrections to the thrust distribution to N3LL.
Our calculation is based on an all-order factorization theorem for the thrust distribution in
the two-jet region T → 1. The traditional method for resummation of event shapes is limited
to NLL. The present paper goes beyond this not only by one but by two orders in logarithmic
accuracy.

The factorization theorem, obtained using Soft-Collinear Effective Theory, separates the
contributions associated with different energy scales in a transparent way. Those associated
with higher energy scales are absorbed into Wilson coefficients. Solving the renormalization-
group equations resums large perturbative logarithms of scale ratios. An advantage of the
effective theory treatment is that the factorization theorem is derived at the operator level. The
different building blocks in the factorization theorem are given by operator matrix elements
and appear in a variety of other processes. With the exception of the two-loop constant in the
soft function, all the necessary ingredients to the factorization theorem were known to N3LL
accuracy from resummations of other processes. We have determined the missing two-loop
constant numerically using effective field theory and an NLO fixed-order event generator.

Comparing to fixed-order results, we found that the logarithmically enhanced pieces, de-
termined by a few constants in the effective theory, amount to the bulk of the fixed-order
results, even away from the endpoint T → 1. Of particular interest is the comparison at
NNLO. The necessary fixed-order calculation has been completed only recently and so far
not been independently checked. The close agreement with the logarithmic contributions we
derive provides a non-trivial check on both calculations. Once matched to the full fixed-order
result, our result is valid not only to N3LL accuracy, but also to NNLO in fixed-order pertur-
bation theory. Matching improves our result away from the endpoint region, but numerically
the matching corrections are small, in particular at NNLO.

Our result is the most precise calculation of an event shape to date, and we have used it
to perform a precision determination of αs using aleph and opal data. Our final combined
result is

αs(mZ) = 0.1172 ± 0.0010(stat) ± 0.0008(sys) ± 0.0012(had) ± 0.0012(pert)

= 0.1172 ± 0.0022 .
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EXTRA SLIDES



POWER CORRECTIONS

So far, we have not included 1/Q power corrections:
finite b-quark mass effects ≈ +1.5% at LEP I

calculated perturbatively, e.g. using NLO event generator 
by Nason and Oleari.
could perform resummation for this part, using SCET, 
see Sonny Mantry’s talk

hadronisation  ~ -1.5% at LEP I
estimated using Pythia to calculate transfer matrix
uncertainty is estimated by comparing Pythia to Herwig and 
Ariadne: 2.5% at LEP I. Now the dominant uncertainty! 
Our precise perturbative prediction can and should be used to 
study hadronisation effects in more detail, using also lower 
energy data.
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Figure 9.1: Summary of the value of αs(MZ) from various processes. The values
shown indicate the process and the measured value of αs extrapolated to µ = MZ .
The error shown is the total error including theoretical uncertainties. The average
quoted in this report which comes from these measurements is also shown. See text
for discussion of errors.

consistent with the theoretical estimates. If the nonperturbative terms are omitted from
the fit, the extracted value of αs(mτ ) decreases by ∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼ 3.058(1+0.112+0.064+0.036).
The size (estimated error) of the nonperturbative term is 20% (7%) of the size of the
order α3

s term. The perturbation series is not very well convergent; if the order α3
s term

is omitted, the extracted value of αs(mτ ) increases by 0.05. The order α4
s term has been

estimated [47] and attempts made to resum the entire series [48,49]. These estimates
can be used to obtain an estimate of the errors due to these unknown terms [50,51].
Another approach to estimating this α4

s term gives a contribution that is slightly larger
than the α3

s term [52].
Rτ can be extracted from the semi-leptonic branching ratio from the relation

Rτ = 1/B(τ → eνν) − 1.97256; where B(τ → eνν) is measured directly or extracted
from the lifetime, the muon mass, and the muon lifetime assuming universality of lepton
couplings. Using the average lifetime of 290.6 ± 1.1 fs and a τ mass of 1776.99 ± 0.29
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