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Figure 3: The diphoton invariant mass distribution with each event weighted by the S/(S+ B)
value of its category. The lines represent the fitted background and signal, and the coloured

bands represent the ±1 and ±2 standard deviation uncertainties on the background estimate.

The inset shows the central part of the unweighted invariant mass distribution.

The largest absolute signal yield as defined above is
taken as the systematic uncertainty on the background
model. It amounts to ±(0.2−4.6) and ±(0.3−6.8) events,
depending on the category for the 7 TeV and 8 TeV data
samples, respectively. In the final fit to the data (see
Section 5.7) a signal-like term is included in the likeli-
hood function for each category. This term incorporates
the estimated potential bias, thus providing a conserva-
tive estimate of the uncertainty due to the background
modeling.

5.6. Systematic uncertainties
Hereafter, in cases where two uncertainties are

quoted, they refer to the 7 TeV and 8 TeV data, respec-
tively. The dominant experimental uncertainty on the
signal yield (±8%, ±11%) comes from the photon re-
construction and identification efficiency, which is es-
timated with data using electrons from Z decays and
photons from Z → !+!−γ events. Pile-up modelling
also affects the expected yields and contributes to the
uncertainty (±4%). Further uncertainties on the sig-
nal yield are related to the trigger (±1%), photon isola-
tion (±0.4%, ±0.5%) and luminosity (±1.8%, ±3.6%).
Uncertainties due to the modelling of the underlying
event are ±6% for VBF and ±30% for other produc-
tion processes in the 2-jet category. Uncertainties on the
predicted cross sections and branching ratio are sum-
marised in Section 8.
The uncertainty on the expected fractions of signal

events in each category is described in the following.
The uncertainty on the knowledge of the material in
front of the calorimeter is used to derive the amount of
possible event migration between the converted and un-
converted categories (±4%). The uncertainty from pile-
up on the population of the converted and unconverted
categories is ±2%. The uncertainty from the jet energy
scale (JES) amounts to up to ±19% for the 2-jet cate-
gory, and up to ±4% for the other categories. Uncertain-
ties from the JVF modelling are ±12% (for the 8 TeV
data) for the 2-jet category, estimated from Z+2-jets
events by comparing data and MC. Different PDFs and
scale variations in the HqT calculations are used to de-
rive possible event migration among categories (±9%)
due to the modelling of the Higgs boson kinematics.
The total uncertainty on the mass resolution is ±14%.

The dominant contribution (±12%) comes from the un-
certainty on the energy resolution of the calorimeter,
which is determined from Z→ e+e− events. Smaller
contributions come from the imperfect knowledge of the
material in front of the calorimeter, which affects the ex-
trapolation of the calibration from electrons to photons
(±6%), and from pile-up (±4%).
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Figure 4: The distributions of the invariant mass of diphoton can-
didates after all selections for the combined 7 TeV and 8 TeV data
sample. The inclusive sample is shown in a) and a weighted version
of the same sample in c); the weights are explained in the text. The
result of a fit to the data of the sum of a signal component fixed to
mH = 126.5 GeV and a background component described by a fourth-
order Bernstein polynomial is superimposed. The residuals of the data
and weighted data with respect to the respective fitted background
component are displayed in b) and d).

5.7. Results

The distributions of the invariant mass, mγγ, of the
diphoton events, summed over all categories, are shown
in Fig. 4(a) and (b). The result of a fit including a signal
component fixed to mH = 126.5 GeV and a background
component described by a fourth-order Bernstein poly-
nomial is superimposed.
The statistical analysis of the data employs an un-

binned likelihood function constructed from those of
the ten categories of the 7 TeV and 8 TeV data samples.
To demonstrate the sensitivity of this likelihood analy-
sis, Fig. 4(c) and (d) also show the mass spectrum ob-
tained after weighting events with category-dependent
factors reflecting the signal-to-background ratios. The
weight wi for events in category i ∈ [1, 10] for the 7 TeV
and 8 TeV data samples is defined to be ln (1 + S i/Bi),

10

ATLAS  arXiv:1207.7214v2 CMS  arXiv:1207.7235v1



Possibilities of the Higgs sector

One Higgs doublet N Higgs doublets

Strongly int.

Weakly int.

2/17



Possibilities of the Higgs sector

One Higgs doublet N Higgs doublets

Strongly int.
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Higher dimensional differential ops.

Kinetic terms of composite Higgs models :

3/17

Integrating out a heavy particle :
HH HH

S V

Leff ⊃ c
H

2f2
∂(H†

H)∂(H†
H)

Leff =
f2

8
tr
��

∂e−2iΠ/f
��

∂e2iΠ/f
��



Higher dimensional differential ops.

Kinetic terms of composite Higgs models :
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Where is the energy scale ?

Higher dimensional differential ops.
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Unitarity bound
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Standard model case
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Unitarity bound for charge neutral & angular momentum zeroth modes

mH � 1 [TeV]

Higgs mass upper bound
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Derivative int. - one Higgs doublet
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In this paper, we clarify scales where the given perturbative description is viable with derivative interactions
of the Higgs doublet in several models.

The rest of this paper is organized as follows. In Sec. 2, we study the unitarity bound given by derivative
interactions in one Higgs doublet models (1HDM). It is extended to the case of the two Higgs doublet models
(2HDMs) in Sec. 3. In both of these sections, the unitarity violation scales are explicitly calculated with
several models. Finally, our study is concluded in Sec. 4.

2 Unitarity of derivative interactions on one Higgs doublet models

The perturbative unitarity given by derivative interactions is discussed on 1HDM. Firstly, we derive the for-
mula of the unitarity bound given by derivative interactions and investigate its general properties. Then, results
are applied to explicit models. The formulae of the perturbative unitarity are shown in App. A.

2.1 Formulae and general properties of the unitarity bound

The effective Lagrangian of derivative interactions in 1HDM is3

L ⊃ cH

2 f 2 ∂ (H†H)∂ (H†H)+
cT

2 f 2 (H
†←→∂ H)(H†←→∂ H), (2.1)

where f is a scale related to new physics. The second operator should include covariant derivatives. However,
gauge fields introduced by this kind of operator are not taken into account in our study so that covariant
derivatives are replaced with derivatives. Since the latter term violates the custodial symmetry, our analysis is
based on the Lagrangian with cT = 0.

Since we consider only four point scatterings given by Eq. (2.1), the vacuum expectation value of the
Higgs boson play no role in the following calculation. Therefore, we use

H =

(
C+

N

)
, H† =

(
C− N†) , (2.2)

where C+/N is a charged/complex-neutral scalar field. The charged scalar and imaginary part of the neutral
scalar are respectively eaten by W± and Z bosons. Using the above notation, the following amplitudes are
obtained4:

M (C+C− →C+C−) =M (NN† → NN†)

=
ŝ+ t̂

f 2 cH , (2.3)

M (C+C− → NN†) =
ŝ
f 2 cH , (2.4)

where ŝ and t̂ are the Mandelstam variables and particles are considered as massless, i.e., ŝ+ t̂ + û = 0.
Following Ref. [2], we construct matrices with partial wave amplitudes. The largest eigenvalue of these

matrices give us more the strongest bound to the perturbative unitarity. We have found zeroth modes produce
the strongest bound in 1HDM, so that we focus on the case. With the formulae in App. A, the bound is given
by the largest eigenvalue of the following matrix:

(
M0(C+C− →C+C−) M0(C+C− → NN†)
M0(NN† →C+C−) M0(NN† → NN†)

)
=

ŝ
16π f 2

(
cH/2 cH

cH cH/2

)
, (2.5)

namely, the bound is

ŝ
f 2 ! 16π

3cH . (2.6)

3Using the field redefinition H → H + (a/ f 2)(H†H)H, where a is chosen as an appropriate value, any other dimension six
derivative interaction of the Higgs doublet can be expressed with these kinds of operators given here [3].

4The EWSB produces corrections of O(v2/ f 2). However we neglect them as neglecting O(m2
W,Z/E2) corrections associated with

the equivalence theorem and dimension eight operators because they all produce subleading effects in this study.
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Figure 2.1: The upper bound of the cross section for W+
L W−

L → hh with the perturbative unitarity condition.
The horizontal axis is the collision energy of this sub process in VBS processes. In the upper shaded region,
the unitarity is broken down. The black, dark gray and light gray lines are the cross sections where f/

√
cH =

500,750 and 1000 GeV, respectively. For the other processes, the bounds can be obtained with the shift of the
vertical axis by factors given in Tab. 1.

2.2 Examples with explicit models

In the rest of this section, we study the unitarity bound on two models: the minimal composite Higgs
model [7]; the littlest Higgs models with T-parity [8]. Since the normalization of decay constants can be
changed, the combination f 2/cH is meaningful. We here follow their normalization given in original papers.
Decay constants have physical meanings through masses of additional massive vector bosons and fermions in
each model.

The Higgs doublet is embedded with typical ways to reflect the custodial symmetry. Therefore the operator
violating the symmetry does not appear in both models.

2.2.1 The minimal composite Higgs model

This model is described by SO(5)/SO(4) nonlinear sigma model including four NG fields. They are identified
as the Higgs doublet.

The Lagrangian is

L =
f 2

2
(∂Σ)† (∂Σ) , (2.11)

with

Σ =

(
sin[h/ f ]!h/h

cos[h/ f ]

)
. (2.12)

where !h is the real scalar multiplet of four NG bosons and h is its norm. Expanding these trigonometric
functions, it is obtained that

cH = 1. (2.13)

With the Eq. (2.6), the relation between the decay constant and the scale of the unitarity violation is

ŝ
f 2 ∼ 16π

3
. (2.14)

4

Process Full Central
W+

L W−
L → hh 1 1/2

W+
L W−

L → W+
L W−

L 2/3 13/48
W+

L W−
L → ZLZL 1 1/2

ZLZL → hh 1 1/2
ZLZL → W+

L W−
L 2 1

W+
L ZL → W+

L ZL 2/3 13/48
W+

L W+
L → W+

L W+
L 1 1/2

Table 1: Cross sections for vector boson scattering (VBS) processes in the unit of σ(W+
L W−

L → hh). In the
column of Full/Central, cross sections of VBS sub processes with/without the central region cut are shown.

Assuming that derivative interactions are purely given by kinetic term of the nonlinear sigma model, the naive
cut off scale is expressed in terms of the decay constant, i.e. Λ = 4π f . Using the relation, the unitarity bound
is related to the cut off scale as

ŝ
Λ 2 ∼ 1

3πcH . (2.7)

Therefore, if the relation

cH ! 1
3π (2.8)

is satisfied, models reach the cut off scale before accessing the unitarity violation scale. Then, the effective
Lagrangian, Eq. (2.1), is available up to the cut off scale. On the other hand, if the coefficient, cH , is much
larger than unity, the unitarity violating scale becomes comparable to the scale of f , so that the effective
Lagrangian description is invalid even in the energy region around f . In the case cH is O(1), the unitarity
violating scale exists between the scale of new physics and the cut off. Examples shown later are involved in
this case. Around the unitarity bound, we have to include resonance effects, see, e.g., Ref [4]. It is therefore
necessary to clarify valid energy scales for the description on each model.

We apply the result to cross sections of the Higgs boson and longitudinal modes of massive gauge bosons
with the equivalence theorem. Since these scatterings are dominated by the coefficient, cH , with the custodial
symmetry, all of cross sections are proportional to each other. Here, we focus on only the process W+

L W−
L →

hh, and relations with the others are shown in Tab. 1. Considering this sort of processes, the importance of
the central region5 has been pointed out in Ref. [5], so that we also show ratios between the cross section of
the Higgs pair production and those of the other processes with the central region cut. The cross section of
W+

L W−
L → hh is

σ(W+
L W−

L → hh) =
ŝ

32π

(
cH

f 2

)2

! 8π
9ŝ

$ 1.1×106

ŝ [TeV]2
[fb]. (2.9)

For W+
L W−

L → hh, Fig. 2.1 shows the region where the perturbative unitarity is violated .
Assuming that cross sections reach the above bound at

√
ŝ = 3 TeV, the decay constant is fixed as

f√
cH

∼
√

3ŝ
16π ∼ 733[GeV]. (2.10)

If cH ∼ 1, the effect of the derivative interaction in the process becomes comparable with the SM one about√
ŝ = 2 TeV where the cross section is 3×104 fb without the central region cut, see Ref. [5]. The value of f

is typically related to the new particle masses. For example, in the little Higgs scenario [6], the top partner
mass is given by O( f ). From the viewpoint of fine tuning, f is required to be below about 1 TeV.

5This region is defined as cosθ ∈ [−1/2,1/2] in detectors, where θ is an angle from the beam axis.
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Following Ref. [2], we construct matrices with partial wave amplitudes. The largest eigenvalue of these

matrices give us more the strongest bound to the perturbative unitarity. We have found zeroth modes produce
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4The EWSB produces corrections of O(v2/ f 2). However we neglect them as neglecting O(m2
W,Z/E2) corrections associated with

the equivalence theorem and dimension eight operators because they all produce subleading effects in this study.
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cH = 1

cH =
1

2

The MCHM : SO(5)/SO(4)

The LHMT : SU(5)/SO(5)

Agashe, Contino and Pomarol (2005)

Cheng and Low (2003)



Comparison with the cut off scale

Λ ∼ 4πfNaive dimensional analysis  : 
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1 Unitarity of derivative interactions on one Higgs doublet models

ŝU

f 2 ∼ 16π
3cH (1.1)

ŝU ∼ Λ 2

3πcH (1.2)

1.1 Formulae and general properties of the unitarity bound

The effective Lagrangian of derivative interactions in 1HDM is3

L ⊃ cH

2 f 2 ∂ (H†H)∂ (H†H)+
cT

2 f 2 (H
†←→∂ H)(H†←→∂ H), (1.3)

where f is a scale related to new physics. The second operator should include covariant derivatives. However,
gauge fields introduced by this kind of operator are not studied in this paper so that covariant derivatives are
replaced with partial derivatives. Since the latter term violates the custodial symmetry, our analysis is based
on the Lagrangian with cT = 0.

Since we consider only four point scatterings given by Eq. (1.3), the vacuum expectation value of the
Higgs boson play no role in the following calculation. Therefore, we use

H =

(
C+

N

)
, H† =

(
C− N†) , (1.4)

where C+/N is a charged/complex-neutral scalar field. The charged scalar and imaginary part of the neutral
scalar are respectively eaten by W± and Z bosons. Using the above notation, the following amplitudes are

3Using the field redefinition H → H + (a/ f 2)(H†H)H, where a is chosen as an appropriate value, any other dimension six
derivative interaction of the Higgs doublet can be expressed with these kinds of operators given here [3].
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2 f 2 ∂ (H†H)∂ (H†H)+
cT

2 f 2 (H
†←→∂ H)(H†←→∂ H), (1.3)

where f is a scale related to new physics. The second operator should include covariant derivatives. However,
gauge fields introduced by this kind of operator are not studied in this paper so that covariant derivatives are
replaced with partial derivatives. Since the latter term violates the custodial symmetry, our analysis is based
on the Lagrangian with cT = 0.

Since we consider only four point scatterings given by Eq. (1.3), the vacuum expectation value of the
Higgs boson play no role in the following calculation. Therefore, we use

H =

(
C+

N

)
, H† =

(
C− N†) , (1.4)

where C+/N is a charged/complex-neutral scalar field. The charged scalar and imaginary part of the neutral
scalar are respectively eaten by W± and Z bosons. Using the above notation, the following amplitudes are

3Using the field redefinition H → H + (a/ f 2)(H†H)H, where a is chosen as an appropriate value, any other dimension six
derivative interaction of the Higgs doublet can be expressed with these kinds of operators given here [3].
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1 Unitarity of derivative interactions on one Higgs doublet models

ŝU

f 2 ∼ 16π
3cH (1.1)

ŝU ∼ Λ 2

3πcH (1.2)

Following Ref. [2], we construct matrices with partial wave amplitudes. The largest eigenvalue of these
matrices give us the strongest bound to the perturbative unitarity. We have found zeroth modes produce the
strongest bound in 1HDM, so that we focus on the case. With the formulae in App. A, the bound is given by
the largest eigenvalue of the following matrix:

(
M0(C+C− →C+C−) M0(C+C− → NN†)
M0(NN† →C+C−) M0(NN† → NN†)

)
=

ŝ
16π f 2

(
cH/2 cH

cH cH/2

)
, (1.3)

namely, the bound is

ŝ
f 2 ! 16π

3cH . (1.4)

Assuming that derivative interactions are purely given by kinetic term of the nonlinear sigma model, the naive
cut off scale is expressed in terms of the decay constant, i.e. Λ = 4π f . Using the relation, the unitarity bound
is related to the cut off scale as

ŝ
Λ 2 ∼ 1

3πcH . (1.5)

Therefore, if the relation

cH ! 1
3π (1.6)

is satisfied, models reach the cut off scale before accessing the unitarity violation scale. Then, the effective
Lagrangian, Eq. (??), is available up to the cut off scale. On the other hand, if the coefficient, cH , is much
larger than unity, the unitarity violation scale becomes comparable to the scale of new physics, f , so that the
description of the effective Lagrangian is invalid even in the energy region around f . In the case cH is O(1),
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Following Ref. [2], we construct matrices with partial wave amplitudes. The largest eigenvalue of these
matrices give us the strongest bound to the perturbative unitarity. We have found zeroth modes produce the
strongest bound in 1HDM, so that we focus on the case. With the formulae in App. A, the bound is given by
the largest eigenvalue of the following matrix:

(
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)
=
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16π f 2
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cH cH/2

)
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namely, the bound is

ŝ
f 2 ! 16π

3cH . (1.4)

Assuming that derivative interactions are purely given by kinetic term of the nonlinear sigma model, the naive
cut off scale is expressed in terms of the decay constant, i.e. Λ = 4π f . Using the relation, the unitarity bound
is related to the cut off scale as

ŝ
Λ 2 ∼ 1

3πcH . (1.5)

Therefore, if the relation

cH ! 1
3π (1.6)

is satisfied, models reach the cut off scale before accessing the unitarity violation scale. Then, the effective
Lagrangian, Eq. (??), is available up to the cut off scale. On the other hand, if the coefficient, cH , is much
larger than unity, the unitarity violation scale becomes comparable to the scale of new physics, f , so that the
description of the effective Lagrangian is invalid even in the energy region around f . In the case cH is O(1),
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To impose the custodial symmetry, the above coefficients are real and follow relations derived in App. B:

3cT
1122 + cH

1221 − cH
1212 =0, (3.5)

cT
1122 + cT

1221 + cT
1212 =0. (3.6)

The 2HDM requires mixing angles to get mass eigenstates of scalar fields. In this paper, we use the
equivalence theorem and focus on only derivative interactions, so that masses of scalar fields are neglected.
Therefore, the perturbative unitarity bound is independent of mixing angles.

Finally, the unitarity bound is given as

ŝ
f 2 ! 8π

|Cmax|
, (3.7)

where Cmax is the largest eigenvalue of the matrices given in App. C.
As we will wee later, the largest eigenvalue |Cmax| can be as large as about ten. In this case the unitarity

bound becomes quite strong and leads to an interesting remark. Suppose the pair production of a heavy
particle whose mass is O( f ) in the VBS process. Owing to the large |Cmax|, the energy scale that produce the
heavy particle pair could be larger than the unitarity violation scale. This means we need to include resonance
effects to analyze this process, which is required just by the unitarity discussion.

3.2 Examples with explicit models

We study consequences of the above result with several models including two Higgs doublets. Following
three models are studied: the bestest little Higgs model [9]; the UV friendly little Higgs model [10]; an inert
doublet model. The first and second ones are composite Higgs models and the last one is a toy model including
elementary Higgs doublets.

3.2.1 The bestest little Higgs model

The bestest little Higgs model is a little Higgs model which includes two Higgs doublets. Scalar fields are im-
plemented as SO(6)×SO(6)/SO(6) nonlinear sigma model which includes 15 NG bosons. The normalization
of the kinetic term is the same as Eq. (2.15), and the NG field is

Π =
i√
2




h1 h2

−hT
1

−hT
2



 , (3.8)

where h1,2 are real scalar multiplets considered as two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
gauge bosons depend on another decay constant that is larger than f in order to avoid constraints from the
electroweak precision measurement (EWPM). Thus effects coming from the heavy gauge bosons are tiny
and we neglect them. The interaction with a singlet is required to obtain a collective quartic coupling. For
simplicity, we introduce the following terms to see the effect:

Lσ ⊃−m2
σ

2
σ2 +λ f σ(H†

1 H2 +H.c.), (3.9)
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To impose the custodial symmetry, the above coefficients are real and follow relations derived in App. B:

3cT
1122 + cH

1221 − cH
1212 =0, (3.5)

cT
1122 + cT

1221 + cT
1212 =0. (3.6)

The 2HDMs require mixing angles to get mass eigenstates of scalar fields. In this paper, we use the
equivalence theorem and focus on only derivative interactions, that is, masses of scalar fields are neglected.
In this case, the perturbative unitarity bound is independent of mixing angles. This is also true for models
including N Higgs doublets.

Finally, the unitarity bound is

ŝ
f 2 ! 8π

|Cmax|
, (3.7)

where Cmax is the largest eigenvalue of the matrices given in App. C.
As we will see later, the largest eigenvalue |Cmax| can be as large as about ten. In this case, the unitarity

bound becomes quite strong and leads to an interesting remark. Suppose that, for instance, the pair production
of a heavy particle whose mass is O( f ) in VBS processes, the energy scale where the pair is produced could
be as large as the unitarity violation scale. This means we couldn’t discuss the kind of process with these low
energy descriptions.

3.2 Examples with explicit models

We study consequences of the above result with several models including two Higgs doublets. Following
three models are studied: the bestest little Higgs model [9]; the UV friendly little Higgs model [10]; an inert
doublet model. The first and second ones are composite Higgs models and the last one is a toy model including
elementary Higgs doublets.

3.2.1 The bestest little Higgs model

The bestest little Higgs model is a little Higgs model which includes two Higgs doublets. Scalar fields are
implemented as SO(6)× SO(6)/SO(6) nonlinear sigma model including 15 NG bosons. The normalization
of the kinetic term is the same as Eq. (2.15), and the NG field is

Π =
i√
2




h1 h2

−hT
1

−hT
2



 , (3.8)

where h1,2 are real scalar multiplets considered two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
gauge bosons depend on the other decay constant that is larger than f in order to avoid constraints from the
electroweak precision measurement (EWPM). Thus effects coming from the heavy gauge bosons are tiny,
then we neglect them. The interaction with a singlet is required to obtain a collective quartic coupling. For
simplicity, we introduce the following terms to see the effect:

Lσ ⊃−m2
σ

2
σ2 +λ f σ(H†

1 H2 +H.c.), (3.9)

6

Charge neutral states

8 × 8 matrix : The largest eigenvalue|Cmax|

with without
I N 2N

II N(N −1) 2N(N −1)
III N(N −1) 3N(N −1)
IV N(N −1)(N −2) 3N(N −1)(N −2)
V N(N −1)(N −2)(N −3)/6 N(N −1)(N −2)(N −3)/2

Sum N2(N2 +5)/6 N2(N2 +3)/2

Table 2: Real DOF of dimension six derivative interactions on models including N Higgs doublets
with/without SO(4) symmetry for each type.

where aY
i jkl and aS

i jkl are respectively coefficients T R3
i j T R3

kl and Sα3
i j Sα3

kl , and the first relation is for type IV and
the others for type V. The following relations are induced for coefficients of derivative interactions: for type
IV,

cT
ii jk + cT

i jik + cT
i jki =0, (B.17)

3cT
ii jk + cH

i jki − cH
i jik =0; (B.18)

for type V,

cH
i jkl − cH

i jlk − cH
ik jl + cH

ikl j + cH
il jk − cH

ilk j =0, (B.19)

3(cT
i jkl + cT

i jlk)− cH
ik jl + cH

ikl j − cH
il jk + cH

ilk j =0, (B.20)

3(cT
ik jl + cT

ikl j)− cH
i jkl + cH

i jlk + cH
il jk − cH

ilk j =0, (B.21)

3(cT
il jk + cT

ilk j)+ cH
i jkl − cH

i jlk + cH
ik jl − cH

ikl j =0. (B.22)

After imposing these conditions to ensure SO(4) symmetry on derivative interactions, remained DOF of them
are shown in Tab. 2.

C Unitarity matrices and other bounds

Following matrices are given by zeroth modes of partial wave amplitudes for various VBS processes in
2HDMs. Using the largest eigenvalue of them, the perturbative unitarity bound is obtained with Eq. (3.7).

C.1 Neutral two body states

The matrix for partial wave amplitudes of neutral two body states are shown here. Initial and final states are
given by eight states, namely, C+

1 C−
1 , C+

1 C−
2 , C+

2 C−
1 , C+

2 C−
2 , N1N†

1 , N1N†
2 , N2N†

1 and N2N†
2 . If all of coefficients

15

Leff ⊃
cH
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†
k
Hl), OT
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= (H†

i

←→
∂ Hj)(H

†
k

←→
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Coefficients  :

2.2.1 The bestest little Higgs model

The bestest little Higgs model is a little Higgs model which includes two Higgs doublets. Scalar fields are
implemented as SO(6)× SO(6)/SO(6) nonlinear sigma model including 15 NG bosons. The normalization
of the kinetic term is the same as Eq. (1.17), and the NG field is

Π =
i√
2




h1 h2

−hT
1

−hT
2



 , (2.8)

where h1,2 are real scalar multiplets considered two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
gauge bosons depend on the other decay constant that is larger than f in order to avoid constraints from the
electroweak precision measurement (EWPM). Thus effects coming from the heavy gauge bosons are tiny,
then we neglect them. The interaction with a singlet is required to obtain a collective quartic coupling. For
simplicity, we introduce the following terms to see the effect:

Lσ ⊃−m2
σ

2
σ2 +λ f σ(H†

1 H2 +H.c.), (2.9)

where σ is a neutral singlet scalar4. Including this contribution, coefficients of derivative interactions are

cH
1111 =

1
2
, cH

1112 =0, (2.10)

cH
1122 =0, cH

1221 =
1
4
+ cσ , cH

1212 =
1
4
+ cσ , (2.11)

cH
2221 =0, cH

2222 =
1
2
, (2.12)

cT
1122 =0, cT

1221 =
1
4
, cT

1212 =− 1
4
, (2.13)

where

cσ =
λ 2 f 4

m4
σ

. (2.14)

The unitarity bound depends on the value of cσ because the largest eigenvalue is a function of it. For 0 ≤ cσ <
1/8, the bound is

ŝ
f 2 ! 16π

2− cσ . (2.15)

At cσ = 0, it is bounded as

ŝ
f 2 ! 8π, (2.16)

and it becomes weak as cσ increases. At cσ = 1/8, the bound is the weakest:

s
f 2 ! 8

16π
15

. (2.17)

In the region, 1/8 < cσ , the bound is

s
f 2 ! 16π

1+7cσ , (2.18)

where the right hand side decrease as cσ increases and the bound becomes the same as the case of cσ = 0 at
cσ = 1/7.

4In the original paper [9], mσ =
√

λ65 +λ56 f and λ = λ65−λ56√
2

.

5

Leff =
f2

8
tr
��

∂e−2iΠ/f
��

∂e2iΠ/f
��

where

Interaction with a heavy singlet scalar

Lσ = −m
2
σ

2
σ2

+ λfσ(H†
1H2 +H.c.)

cH1221 = cH1212 =
1

4
+

λ2f4

m4
σ

,

Schmaltz, Stolarski and Thaler (2010)

cT1221 =
1

4
, cT1212 = −1

4
.

cH1111 = cH2222 =
1

2
,
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2.2.1 The bestest little Higgs model

The bestest little Higgs model is a little Higgs model which includes two Higgs doublets. Scalar fields are
implemented as SO(6)× SO(6)/SO(6) nonlinear sigma model including 15 NG bosons. The normalization
of the kinetic term is the same as Eq. (1.17), and the NG field is

Π =
i√
2




h1 h2

−hT
1

−hT
2



 , (2.8)

where h1,2 are real scalar multiplets considered two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
gauge bosons depend on the other decay constant that is larger than f in order to avoid constraints from the
electroweak precision measurement (EWPM). Thus effects coming from the heavy gauge bosons are tiny,
then we neglect them. The interaction with a singlet is required to obtain a collective quartic coupling. For
simplicity, we introduce the following terms to see the effect:

Lσ ⊃−m2
σ

2
σ2 +λ f σ(H†

1 H2 +H.c.), (2.9)

where σ is a neutral singlet scalar4. Including this contribution, coefficients of derivative interactions are
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where
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The unitarity bound depends on the value of cσ because the largest eigenvalue is a function of it. For 0 ≤ cσ <
1/8, the bound is

ŝ
f 2 ! 16π

2− cσ . (2.15)

At cσ = 0, it is bounded as

ŝ
f 2 ! 8π, (2.16)

and it becomes weak as cσ increases. At cσ = 1/8, the bound is the weakest:
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15

. (2.17)

In the region, 1/8 < cσ , the bound is
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1+7cσ , (2.18)

where the right hand side decrease as cσ increases and the bound becomes the same as the case of cσ = 0 at
cσ = 1/7.
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2.2.1 The bestest little Higgs model

The bestest little Higgs model is a little Higgs model which includes two Higgs doublets. Scalar fields are
implemented as SO(6)× SO(6)/SO(6) nonlinear sigma model including 15 NG bosons. The normalization
of the kinetic term is the same as Eq. (1.13), and the NG field is

Π =
i√
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


h1 h2

−hT
1
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2



 , (2.8)

where h1,2 are real scalar multiplets considered two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
gauge bosons depend on the other decay constant that is larger than f in order to avoid constraints from the
electroweak precision measurement (EWPM). Thus effects coming from the heavy gauge bosons are tiny,
then we neglect them. The interaction with a singlet is required to obtain a collective quartic coupling. For
simplicity, we introduce the following terms to see the effect:

Lσ ⊃−m2
σ

2
σ2 +λ f σ(H†

1 H2 +H.c.), (2.9)

where σ is a neutral singlet scalar4. Including this contribution, coefficients of derivative interactions are

cH
1111 =

1
2
, cH

1112 =0, (2.10)

cH
1122 =0, cH

1221 =
1
4
+ cσ , cH

1212 =
1
4
+ cσ , (2.11)

cH
2221 =0, cH

2222 =
1
2
, (2.12)

cT
1122 =0, cT

1221 =
1
4
, cT

1212 =− 1
4
, (2.13)

where

cσ =
λ 2 f 4

m4
σ

. (2.14)

The unitarity bound depends on the value of cσ because the largest eigenvalue is a function of it. For 0 ≤ cσ <
1/8, the bound is

ŝ
f 2 ! 16π

2− cσ . (2.15)

At cσ = 0, it is bounded as

ŝ
f 2 ! 8π, (2.16)

and it becomes weak as cσ increases. At cσ = 1/8, the bound is the weakest:

ŝ
f 2 ! 8

16π
15

. (2.17)

In the region, 1/8 < cσ , the bound is

ŝ
f 2 ! 16π

1+7cσ , (2.18)

where the right hand side decrease as cσ increases and the bound becomes the same as the case of cσ = 0 at
cσ = 1/7.

4In the original paper [9], mσ =
√

λ65 +λ56 f and λ = λ65−λ56√
2

.
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
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where h1,2 are real scalar multiplets considered two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
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The unitarity bounds of W+
L W−

L → hh and W+
L W−

L →W+
L W−

L are displayed below. We define mass eigen-
states, h and W±

L , as follows:

h√
2
=NR

1 cosα +NR
2 sinα, (2.19)

W±
L =C±

1 cosβ +C±
2 sinβ , (2.20)

where NR
i is the real part of Ni and α and β are mixing angles. Unitarity bounds for these processes are

σ(W+
L W−

L → hh) =
ŝ

32π f 4 Bh(α,β )2 ! 2π
ŝ

Bh(α,β )2

Cmax
2 , (2.21)

σ(W+
L W−

L →W+
L W−

L ) =
ŝ

48π f 4 Bw(β )2 ! 4π
3ŝ

Bw(β )2

Cmax
2 , (2.22)

where

Bh(α,β ) =1
4
(
1+(1+2cσ (1− c4β ))c2(α−β ) +2cσ s4β s2(α−β )

)
, (2.23)

Bw(β ) =
1
2
(
1+ cσ (1− c4β )

)
. (2.24)

Parameters cx and sx are cosx and sinx, and Cmax = (2− cσ )/2 for 0 ≤ cσ < 1/8 and Cmax = (1+7cσ )/2 for
1/8 ≤ cσ . If α = β is satisfied, it is called the decoupling limit, and we get the relation: Bh(β ,β ) = Bw(β ).

The perturbative unitarity bounds of W+
L W−

L → hh are shown in Fig. ??. In order to see the effects of
new parameters, we fix the decay constant as 750 GeV. The shaded regions in these figures are changed by the
mixing angles because the cross section depends on the angles. However, the unitarity bound itself depends on
only the coefficient, cσ . Hence we can see that the energy scales where the cross sections intersect the unitarity
violation regions are independent on the angles, e.g.,

√
ŝ ∼ 1.9 TeV for cσ = 1. For β = 0 and α −β = π/6,

the cross sections don’t depend on the value of cσ ; thus, we have only one line but still intersecting points are
the same.

2.2.2 The UV friendly little Higgs model

The UV friendly little Higgs model also includes two Higgs doublets in a part of 14 NG bosons given by
SU(6)/Sp(6) nonlinear sigma model. The normalization of the kinetic term is also the same as Eq. (1.13).
Since we study only Higgs doublets, NG field Π can be considered as follows5:

Π =
1
2





−ε(H1 −H2) H1 +H2

ε(H†
1 −H†

2 ) −HT
1 −HT

2
H†

1 +H†
2 ε(HT

1 −HT
2 )

−H∗
1 −H∗

2 −ε(H∗
1 −H∗

2 )



 , (2.25)

where ε is the totally antisymmetric tensor, ε12 = 1. Since contributions given by heavy new particles can
be ignored in this model, only derivative interactions generated by the kinetic term are taken into account.
Following coefficients of derivative interactions are produced by the kinetic term:

cH
1111 =4, cH

1112 =0, (2.26)

cH
1122 =1, cH

1221 =0, cH
1212 =−3, (2.27)

cH
2221 =0, cH

2222 =4, (2.28)

cT
1122 =1, cT

1221 =0, cT
1212 =1. (2.29)

5Assignment and normalization of NG bosons given by the original paper are different from ordinary prescription of the nonlinear
sigma model. Since we study only the part of two Higgs doublets, normalization of these field are changed in order to study with the
canonical normalization.
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L W−

L → hh are shown in Fig. ??. In order to see the effects of
new parameters, we fix the decay constant as 750 GeV. The shaded regions in these figures are changed by the
mixing angles because the cross section depends on the angles. However, the unitarity bound itself depends on
only the coefficient, cσ . Hence we can see that the energy scales where the cross sections intersect the unitarity
violation regions are independent on the angles, e.g.,

√
ŝ ∼ 1.9 TeV for cσ = 1. For β = 0 and α −β = π/6,

the cross sections don’t depend on the value of cσ ; thus, we have only one line but still intersecting points are
the same.

2.2.2 The UV friendly little Higgs model

The UV friendly little Higgs model also includes two Higgs doublets in a part of 14 NG bosons given by
SU(6)/Sp(6) nonlinear sigma model. The normalization of the kinetic term is also the same as Eq. (1.13).
Since we study only Higgs doublets, NG field Π can be considered as follows5:
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 , (2.25)

where ε is the totally antisymmetric tensor, ε12 = 1. Since contributions given by heavy new particles can
be ignored in this model, only derivative interactions generated by the kinetic term are taken into account.
Following coefficients of derivative interactions are produced by the kinetic term:

cH
1111 =4, cH

1112 =0, (2.26)

cH
1122 =1, cH

1221 =0, cH
1212 =−3, (2.27)

cH
2221 =0, cH

2222 =4, (2.28)

cT
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canonical normalization.

6

cσ =
λ2f4

m4
σ

Cross section :

where

OH
i jkl =

1
1+δikδ jl

∂ (H†
i Hj)∂ (H†

k Hl), (3.2)

OT
i jkl =

1
1+δikδ jl

(H†
i
←→
∂ Hj)(H†

k
←→
∂ Hl), (3.3)

and

Hi =

(
C+

i
Ni

)
, H†

i =
(
C−

i N†
i
)
. (3.4)

To impose the custodial symmetry, the above coefficients are real and follow relations derived in App. B:

3cT
1122 + cH

1221 − cH
1212 =0, (3.5)

cT
1122 + cT

1221 + cT
1212 =0. (3.6)

The 2HDM requires mixing angles to get mass eigenstates of scalar fields. In this paper, we use the
equivalence theorem and focus on only derivative interactions, so that masses of scalar fields are neglected.
Therefore, the perturbative unitarity bound is independent of mixing angles.

Finally, the unitarity bound is given as

ŝ
f 2 ! 8π

|Cmax|
, (3.7)

where Cmax is the largest eigenvalue of the matrices given in App. C.
As we will wee later, the largest eigenvalue |Cmax| can be as large as about ten. In this case the unitarity

bound becomes quite strong and leads to an interesting remark. Suppose the pair production of a heavy
particle whose mass is O( f ) in the VBS process. Owing to the large |Cmax|, the energy scale that produce the
heavy particle pair could be larger than the unitarity violation scale. This means we need to include resonance
effects to analyze this process, which is required just by the unitarity discussion.

3.2 Examples with explicit models

We study consequences of the above result with several models including two Higgs doublets. Following
three models are studied: the bestest little Higgs model [9]; the UV friendly little Higgs model [10]; an inert
doublet model. The first and second ones are composite Higgs models and the last one is a toy model including
elementary Higgs doublets.

3.2.1 The bestest little Higgs model

The bestest little Higgs model is a little Higgs model which includes two Higgs doublets. Scalar fields are im-
plemented as SO(6)×SO(6)/SO(6) nonlinear sigma model which includes 15 NG bosons. The normalization
of the kinetic term is the same as Eq. (2.15), and the NG field is

Π =
i√
2




h1 h2

−hT
1

−hT
2



 , (3.8)

where h1,2 are real scalar multiplets considered as two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
gauge bosons depend on another decay constant that is larger than f in order to avoid constraints from the
electroweak precision measurement (EWPM). Thus effects coming from the heavy gauge bosons are tiny
and we neglect them. The interaction with a singlet is required to obtain a collective quartic coupling. For
simplicity, we introduce the following terms to see the effect:

Lσ ⊃−m2
σ

2
σ2 +λ f σ(H†

1 H2 +H.c.), (3.9)
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Example 1 : The bestest LH
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Figure 3.1: The perturbative unitarity bounds of W+
L W−

L → hh for various cσ and mixing angles. The decay
constant is fixed as 750 GeV. The Mixing angles are set as (β ,α −β ) = (π/6,0) (upper left), (0,π/6) (upper
right), (π/4,π/6) (lower left) and (π/6,π/4) (lower right). The light gray, dark gray and black lines are cross
sections for cσ = 1,0 and 1/8, respectively. Unitarity violation regions depend on the value of cσ , and their
brightness correspond to each line.
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Example 2 : The UV friendly T-parity LH

15/17

Global symmetry  :  SU(6) / Sp(6)

The unitarity bounds of W+
L W−

L → hh and W+
L W−

L →W+
L W−

L are displayed below. We define mass eigen-
states, h and W±

L , as follows:

h√
2
=NR

1 cosα +NR
2 sinα, (2.19)

W±
L =C±

1 cosβ +C±
2 sinβ , (2.20)

where NR
i is the real part of Ni and α and β are mixing angles. Unitarity bounds for these processes are

σ(W+
L W−

L → hh) =
ŝ

32π f 4 Bh(α,β )2 ! 2π
ŝ

Bh(α,β )2

Cmax
2 , (2.21)

σ(W+
L W−

L →W+
L W−

L ) =
ŝ

48π f 4 Bw(β )2 ! 4π
3ŝ

Bw(β )2

Cmax
2 , (2.22)

where

Bh(α,β ) =1
4
(
1+(1+2cσ (1− c4β ))c2(α−β ) +2cσ s4β s2(α−β )

)
, (2.23)

Bw(β ) =
1
2
(
1+ cσ (1− c4β )

)
. (2.24)

Parameters cx and sx are cosx and sinx, and Cmax = (2− cσ )/2 for 0 ≤ cσ < 1/8 and Cmax = (1+7cσ )/2 for
1/8 ≤ cσ . If α = β is satisfied, it is called the decoupling limit, and we get the relation: Bh(β ,β ) = Bw(β ).

The perturbative unitarity bounds of W+
L W−

L → hh are shown in Fig. ??. In order to see the effects of
new parameters, we fix the decay constant as 750 GeV. The shaded regions in these figures are changed by the
mixing angles because the cross section depends on the angles. However, the unitarity bound itself depends on
only the coefficient, cσ . Hence we can see that the energy scales where the cross sections intersect the unitarity
violation regions are independent on the angles, e.g.,

√
ŝ ∼ 1.9 TeV for cσ = 1. For β = 0 and α −β = π/6,

the cross sections don’t depend on the value of cσ ; thus, we have only one line but still intersecting points are
the same.

2.2.2 The UV friendly little Higgs model

The UV friendly little Higgs model also includes two Higgs doublets in a part of 14 NG bosons given by
SU(6)/Sp(6) nonlinear sigma model. The normalization of the kinetic term is also the same as Eq. (1.17).
Since we study only Higgs doublets, NG field Π can be considered as follows5:

Π =
1
2





−ε(H1 −H2) H1 +H2

ε(H†
1 −H†

2 ) −HT
1 −HT

2
H†

1 +H†
2 ε(HT

1 −HT
2 )

−H∗
1 −H∗

2 −ε(H∗
1 −H∗

2 )



 , (2.25)

where ε is the totally antisymmetric tensor, ε12 = 1. Since contributions given by heavy new particles can
be ignored in this model, only derivative interactions generated by the kinetic term are taken into account.
Following coefficients of derivative interactions are produced by the kinetic term:

cH
1111 =4, cH

1112 =0, (2.26)

cH
1122 =1, cH

1221 =0, cH
1212 =−3, (2.27)

cH
2221 =0, cH

2222 =4, (2.28)

cT
1122 =1, cT

1221 =0, cT
1212 =1. (2.29)

5Assignment and normalization of NG bosons given by the original paper are different from ordinary prescription of the nonlinear
sigma model. Since we study only the part of two Higgs doublets, normalization of these field are changed in order to study with the
canonical normalization.
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Coefficients  : cH1122 = 1, cH1212 = −3,

Because of        symmetry, Z2

Brown, Frugiuele and Gregoire (2011)
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�

0
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√
2

�
�H2� =

�
0
0

�
and

No mixing angles

cH1111 = cH2222 = 4,

cT1122 = cT1212 = 1.



Example 2 : The UV friendly LH
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Figure 3.2: The perturbative unitarity bounds of W+
L W−

L → hh in the UV friendly little Higgs model. The
horizontal axis is the collision energy of this VBS sub process. In the upper shaded region, the unitarity is
broken down. The black, dark gray and light gray lines are the cross sections corresponding to f = 500,750
and 1000 GeV, respectively.

3.2.3 Inert doublet models with odd scalars

We investigate the following Lagrangian consisting of elementary scalar and vector fields:

L ⊃− m2
s0

2
φ 2

0 +λ0 f φ0

(
H†

1 H2 +H.c.
)

− m2
sL
2

φ a
L φ a

L +λL f φ a
L

(
H†

1 σ aH2 +H.c.
)

−m2
sLφ a†

T φ a
T +

√
2λL f

(
φ a†

T (HT
1 σ 2σ aH2)+H.c.

)

+
m2

v0
2

V0 ·V0 +g0V0 ·
(

iH†
1
←→
∂ H2 +H.c.

)

+m2
v0V †

S ·VS +
√

2g0

(
iV †

S ·HT
1 σ 2←→∂ H2 +H.c.

)

+
m2

vL
2

V a
L ·V a

L +gLV a
L ·

(
iH†

1 σ a←→∂ H2 +H.c.
)
. (3.33)

Scalar fields, φ0, φ a
L and φ a

T , are respectively 10, 30 and 31 representations of SU(2)L ×U(1)Y , and vector
fields, V0, VS and V a

L are respectively 10, 11 and 30 representations of the gauge symmetry. We suppose that
these new particles and H2 are odd under an additional Z2 symmetry, and H1 and the other SM particles are
even under the discrete symmetry. These choices of couplings and masses for φ a

L and φ a
T , and V0 and VS are

required to respect SO(4) symmetry8. This set up suppresses contributions to oblique corrections.
Integrating out heavy particles, following coefficients of derivative interactions are obtained:

cH
1111 =0, cH

1112 =0, (3.34)

cH
1122 =−2sL +3v0 +3vL, cH

1221 =s0 −2sL +3v0, cH
1212 =s0 −2sL +3vL, (3.35)

cH
2221 =0, cH

2222 =0, (3.36)

cT
1122 =− v0 + vL, cT

1221 =− sL − vL, cT
1212 =sL + v0, (3.37)

8This structure should be broken by renormalization group running of them even if the UV completion possesses the structure.
We assume that this SO(4) symmetry is still good symmetry so as to suppress large corrections to the ρ parameter in the scale where
the Lagrangian (3.33) is available.
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These coefficients apparently violate the custodial invariant conditions, Eqs. (2.5) and (2.6). However, tree
level contributions to ρ parameter cannot occur because of Z2 symmetry. With these coefficients, the strongest
bound is

ŝ
f 2 ! π. (2.30)

Assuming that the perturbative unitarity is violated at 3 TeV, the decay constant, f , is determined as 1.7 TeV.
This value looks large in the viewpoint of the fine tuning as we have already seen. On the other hand, if the
decay constant is about 1 TeV, the unitarity is broken below about 1.7 TeV.

The unitarity bounds of W+
L W−

L → hh and W+
L W−

L →W+
L W−

L are

σ(W+
L W−

L → hh) =
ŝ

2π f 4 ! π
2ŝ
, (2.31)

σ(W+
L W−

L →W+
L W−

L ) =
ŝ

3π f 4 ! π
3ŝ
. (2.32)

Note that the cross sections have no mixing angle dependences because of Z2 structure; only one Higgs doublet
gets the vacuum expectation value. These bounds to cross sections are shown in Fig. ??. It corresponds to
the case cσ = 15/7 for the bestest little Higgs model. The unitarity bound of this model is severe because the
largest eigenvalue is quite larger than the previous models.

2.2.3 Inert doublet models with odd scalars

We investigate the following Lagrangian consisting of elementary scalar and vector fields:

L ⊃− m2
s0

2
φ 2

0 +λ0 f φ0

(
H†

1 H2 +H.c.
)

− m2
sL
2

φ a
L φ a

L +λL f φ a
L

(
H†

1 σ aH2 +H.c.
)

−m2
sLφ a†

T φ a
T +

√
2λL f

(
φ a†

T (HT
1 σ 2σ aH2)+H.c.

)

+
m2

v0
2

V0 ·V0 +g0V0 ·
(

iH†
1
←→
∂ H2 +H.c.

)

+m2
v0V †

S ·VS +
√

2g0

(
iV †

S ·HT
1 σ 2←→∂ H2 +H.c.

)

+
m2

vL
2

V a
L ·V a

L +gLV a
L ·

(
iH†

1 σ a←→∂ H2 +H.c.
)
. (2.33)

Scalar fields, φ0, φ a
L and φ a

T , are respectively 10, 30 and 31 representations of SU(2)L ×U(1)Y , and vector
fields, V0, VS and V a

L are respectively 10, 11 and 30 representations of the gauge symmetry. We suppose that
these new particles and H2 are odd under an additional Z2 symmetry, and H1 and the other SM particles are
even under the discrete symmetry. These choices of couplings and masses for φ a

L and φ a
T , and V0 and VS are

required to respect SO(4) symmetry6. This set up suppresses contributions to oblique corrections.
Integrating out heavy particles, following coefficients of derivative interactions are obtained:

cH
1111 =0, cH

1112 =0, (2.34)

cH
1122 =−2sL +3v0 +3vL, cH

1221 =s0 −2sL +3v0, cH
1212 =s0 −2sL +3vL, (2.35)

cH
2221 =0, cH

2222 =0, (2.36)

cT
1122 =− v0 + vL, cT

1221 =− sL − vL, cT
1212 =sL + v0, (2.37)

6This structure should be broken by renormalization group running of them even if the UV completion possesses the structure.
We assume that this SO(4) symmetry is still good symmetry so as to suppress large corrections to the ρ parameter in the scale where
the Lagrangian (2.33) is available.
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Cross section   :

The largest eigenvalue  : 

where

OH
i jkl =

1
1+δikδ jl

∂ (H†
i Hj)∂ (H†

k Hl), (3.2)

OT
i jkl =

1
1+δikδ jl

(H†
i
←→
∂ Hj)(H†

k
←→
∂ Hl), (3.3)

and

Hi =

(
C+

i
Ni

)
, H†

i =
(
C−

i N†
i
)
. (3.4)

To impose the custodial symmetry, the above coefficients are real and follow relations derived in App. B:

3cT
1122 + cH

1221 − cH
1212 =0, (3.5)

cT
1122 + cT

1221 + cT
1212 =0. (3.6)

The 2HDM requires mixing angles to get mass eigenstates of scalar fields. In this paper, we use the
equivalence theorem and focus on only derivative interactions, so that masses of scalar fields are neglected.
Therefore, the perturbative unitarity bound is independent of mixing angles.

Finally, the unitarity bound is given as

ŝ
f 2 ! 8π

|Cmax|
, (3.7)

where Cmax is the largest eigenvalue of the matrices given in App. C.
As we will wee later, the largest eigenvalue |Cmax| can be as large as about ten. In this case the unitarity

bound becomes quite strong and leads to an interesting remark. Suppose the pair production of a heavy
particle whose mass is O( f ) in the VBS process. Owing to the large |Cmax|, the energy scale that produce the
heavy particle pair could be larger than the unitarity violation scale. This means we need to include resonance
effects to analyze this process, which is required just by the unitarity discussion.

3.2 Examples with explicit models

We study consequences of the above result with several models including two Higgs doublets. Following
three models are studied: the bestest little Higgs model [9]; the UV friendly little Higgs model [10]; an inert
doublet model. The first and second ones are composite Higgs models and the last one is a toy model including
elementary Higgs doublets.

3.2.1 The bestest little Higgs model

The bestest little Higgs model is a little Higgs model which includes two Higgs doublets. Scalar fields are im-
plemented as SO(6)×SO(6)/SO(6) nonlinear sigma model which includes 15 NG bosons. The normalization
of the kinetic term is the same as Eq. (2.15), and the NG field is

Π =
i√
2




h1 h2

−hT
1

−hT
2



 , (3.8)

where h1,2 are real scalar multiplets considered as two Higgs doublets and the other NG bosons are eliminated.
In this model, Higgs doublets interact with heavy gauge bosons and a singlet scalar. The masses of heavy
gauge bosons depend on another decay constant that is larger than f in order to avoid constraints from the
electroweak precision measurement (EWPM). Thus effects coming from the heavy gauge bosons are tiny
and we neglect them. The interaction with a singlet is required to obtain a collective quartic coupling. For
simplicity, we introduce the following terms to see the effect:

Lσ ⊃−m2
σ

2
σ2 +λ f σ(H†

1 H2 +H.c.), (3.9)
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1 Unitarity of derivative interactions on one Higgs doublet models

ŝU

f 2 ∼ 16π
3cH (1.1)

ŝU ∼ Λ 2

3πcH (1.2)

Cmax = 4 (1.3)

Following Ref. [2], we construct matrices with partial wave amplitudes. The largest eigenvalue of these
matrices give us the strongest bound to the perturbative unitarity. We have found zeroth modes produce the
strongest bound in 1HDM, so that we focus on the case. With the formulae in App. A, the bound is given by
the largest eigenvalue of the following matrix:

(
M0(C+C− →C+C−) M0(C+C− → NN†)
M0(NN† →C+C−) M0(NN† → NN†)

)
=

ŝ
16π f 2

(
cH/2 cH

cH cH/2

)
, (1.4)

namely, the bound is

ŝ
f 2 ! 16π

3cH . (1.5)

Assuming that derivative interactions are purely given by kinetic term of the nonlinear sigma model, the naive
cut off scale is expressed in terms of the decay constant, i.e. Λ = 4π f . Using the relation, the unitarity bound
is related to the cut off scale as

ŝ
Λ 2 ∼ 1

3πcH . (1.6)

Therefore, if the relation

cH ! 1
3π (1.7)

1
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†Unitarity bound for dim 6 derivative interactions

- Highly model dependence

- Important to clarify the valid energy scale model by model

- High energy linear collider study for vector boson scatterings

†Future directions

- Comparison with LHC performance

- One doublet & two doublets examples

- The largest eigenvalue gives the severest bound


