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W mass at LEP?2
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e~ e™ — 4 fermions = precise determination of the W mass
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accuracy = W-mass uncertainty 33 MeV
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W mass at LEP?2

e~ e™ — 4 fermions = precise determination of the W mass
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Tevatron [Run-1/2] :# 80.430+0.040
Xeldof = 0612
Overall average # | 80.398+0.025
80.0 81.0
M, [GeV]
PDG

e Total cross section at LEP2 from WW to 207 GeV with 1%
accuracy = W-mass uncertainty 33 MeV

e Combination of LEP2 / TEVATRON reduces to 25 MeV

e Foreseen improvement of 50% at the LHC
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W mass at the ILC

More precise measurement of the W mass at the ILC, where the total
cross section for e~ et — 4 fermions can be determined with a 0.1%
accuracy
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Estimates on the accuracy of the W-mass determination based on

o statistics and performance of the future linear collider

o radiative corrections to e~ e™ — 4 fermions under control when
converting cross section — W mass
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W mass at the ILC

More precise measurement of the W mass at the ILC, where the total
cross section for e~ et — 4 fermions can be determined with a 0.1%
accuracy

e W decay at /s = 500 GeV = 10 MeV [Ménig-Tonazzo '00] [500 fb—1]

e WW-threshold scan = 6 MeV [wilson '01] [100 fb—1]

lower integrated luminosity for accuracy goal

Estimates on the accuracy of the W-mass determination based on

o statistics and performance of the future linear collider

o radiative corrections to e~ e™ — 4 fermions under control when
converting cross section — W mass

W unstable = effects due to the W width taken into account
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NLO predictions for e~ e™ — 4 fermions

LEP2 analysis with YFSWW [Jadach-Placzek-Skrzypek-Ward-Was '00] and
RACOONWW [Denner-Dittmaier-Roth-Wackeroth '00] (selected radiative
corrections to LO); ILC accuracy = full NLO computation needed
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= complex-mass scheme (no kinematic restriction, exclusive)
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LEP2 analysis with YFSWW [Jadach-Placzek-Skrzypek-Ward-Was '00] and

RACOONWW [Denner-Dittmaier-Roth-Wackeroth '00] (selected radiative
corrections to LO); ILC accuracy = full NLO computation needed

NLO corrections where the W width is included respecting gauge

invariance have been evaluated by two groups:

e [Denner-Dittmaier-Roth-Wieders '05]
(no kinematic restriction, exclusive)

= complex-mass scheme

® [Beneke-Falgari-Schwinn-Signer-Zanderighi '07]

= EFT for unstable particles (in the threshold region, inclusive)

o(e~e™ — p~puud X)(fb)
Vs [GeV] Born EFT CMS shift
161 107.06(4) | 117.38(4) | 118.12(8) | 0.6 %
170 381.0(2) | 399.9(2) | 401.8(2) | 05 %
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NLO predictions for e~ e™ — 4 fermions

LEP2 analysis with YFSWW [Jadach-Placzek-Skrzypek-Ward-Was '00] and
RACOONWW [Denner-Dittmaier-Roth-Wackeroth '00] (selected radiative
corrections to LO); ILC accuracy = full NLO computation needed

NLO corrections where the W width is included respecting gauge
invariance have been evaluated by two groups:
e [Denner-Dittmaier-Roth-Wieders '05]
= complex-mass scheme (no kinematic restriction, exclusive)

® [Beneke-Falgari-Schwinn-Signer-Zanderighi '07]
= EFT for unstable particles (in the threshold region, inclusive)

o(e~e™ — p~puud X)(fb)
Vs [GeV] Born EFT CMS shift
161 107.06(4) | 117.38(4) | 118.12(8) | 0.6 %
170 381.0(2) | 399.9(2) | 401.8(2) | 05 %

EFT tailored to threshold region: simple computation, compact result,
easy evaluation of dominant NNLO corrections at threshold
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Hierarchy of scales

EFT for unstable particles [Chapovsky-Khoze-Signer-Stirling '01, Beneke-

Chapovsky-Signer-Zanderighi ‘03] exploits the hierarchy of scales for
simplifying the treatment of the threshold region

e The process is characterized by two well-separated scales
A=My >> =Ty

e Calculation re-organized through a loop and kinematical
expansion in the small parameters

aew =a/sin®0  (s—4M%)/(4ME)  Tw/Mw
Standard loop expansion does not work when resonances are

present because of terms ~ gM?/ (p? — M?) at all orders in g
(re-summation)

Collectively denoted by ¢, of the same order for power counting

Conclusions
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EFT organizes the computation of the total cross section fore~ et —
4 fermions in terms of degrees of freedom with different momentum
scalings (method of regions [Beneke-Smirnov '97])
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« light with large k?

+ heavy particles
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Momentum scalings

EFT organizes the computation of the total cross section fore~ et —
4 fermions in terms of degrees of freedom with different momentum
scalings (method of regions [Beneke-Smirnov '97])

e hard ko ~ K| ~ My o potential ko ~Mwd |K| ~ Mw /3
e soft ko~ |K| ~ Mwd e collinear ko ~ My k2~ M2
Integrate out hard modes introducing matching coefficients

=- Short-distance physics: .
* non-resonant W’s

« light with large k?

+ heavy particles

Potential, soft and collinear modes (long-distance physics) generate
radiative corrections in the EFT
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Outline of the computation

1) Extract the total cross section for e~ e™ — 4 fermions from the cuts
of the e ~e™ forward-scattering amplitude
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2) Fix the coefficients of the EFT operators by a matching with the SM
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Outline of the computation

1) Extract the total cross section for e~ e™ — 4 fermions from the cuts
of the e ~e™ forward-scattering amplitude

i e e I’Vi e |

v/% w

: T W e wi

Wi

iA= Z/d“x <e e Tiof 0)ioP(x)le et >+ 3" <eetfiof)(0)e et >
k.l k

resonant (eff. operatory nonresonant (eff. operatory

2) Fix the coefficients of the EFT operators by a matching with the SM

3) Evaluate loop corrections to the EFT matrix element:
e resonant W’s k2 — M3, ~ My Ny
® Coulomb and soft photons k2 ~Mylw and k% ~TZ

® high-energy external fermions k2=0
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Re-organization of perturbative expansion = identify the dominant
NNLO corrections from the power of § for each EFT diagram

5~ aew = a/SiN0 ~ (s — 4MZ) / (4M&) ~ Tw/Mw
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Dominant NNLO corrections

Re-organization of perturbative expansion = identify the dominant
NNLO corrections from the power of § for each EFT diagram

5~ aew = a/SiN0 ~ (s — 4MZ) / (4M&) ~ Tw/Mw
¢ Single-photon exchange diagrams = NLO corrections in SM

e EFT assigns different scaling properties to diagrams with
Coulomb- and soft-photon exchange
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Dominant NNLO corrections

Re-organization of perturbative expansion = identify the dominant
NNLO corrections from the power of § for each EFT diagram

5~ aew = a/SiN0 ~ (s — 4MZ) / (4M&) ~ Tw/Mw
¢ Single-photon exchange diagrams = NLO corrections in SM

e EFT assigns different scaling properties to diagrams with
Coulomb- and soft-photon exchange

, N , N
/ /
\ ! \ !

1
2 / 4 4 2 1
agya | d k/d Ky —= ox o 2 /d4k/d4k 2 51/2
ew \5/2 55 ew Qg O 7 5452 X Qlgyy O
55/ §5/2 55/2 5

= NNLO: a3, a ¢ (dominant) and a2, a 6°/? (sub-dominant)
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Corrections to single-Coulomb-exchange diagrams (I)

Single-Coulomb-exchange diagrams & soft- and collinear-photon
emission and one-loop corrections to the matching coefficient of the
production operator
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Corrections to single-Coulomb-exchange diagrams (I)

Single-Coulomb-exchange diagrams & soft- and collinear-photon
emission and one-loop corrections to the matching coefficient of the
production operator

wowow

EFT: e point-like interaction between leptons and resonant W’'s

e bare W propagator replaced with effective re-summed one
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Corrections to single-Coulomb-exchange diagrams (II)

Two independent evaluations:

e convolute all-order Coulomb Green’s function with real radiation
e mapping diagrams on one- and two-loop tadpole integrals
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Corrections to single-Coulomb-exchange diagrams (II)

Two independent evaluations:

e convolute all-order Coulomb Green’s function with real radiation
e mapping diagrams on one- and two-loop tadpole integrals

a2, o? 2 1 & &
Aoy = — —ew 9+ 4 2Rec! ))Im[ln (——W)} 2Im[|n2 (——W)”
oL 27s {( to T P My )| T My

Ew= VS —2My +ilw, cgl) — NLO matching coefficient of production operator

e result sensitive to the electron mass = In (2My /me)

e large logarithms subtracted and re-absorbed in the ESFs I'(x)
[Skrzypek '92, Beenakker et al. '96]

1 1
o(s) = /o dx, /o i T (X )T (2) (1%25)
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Corrections to the Coulomb potential

Fermion-loop corrections to the Coulomb force between resonant W’'s

Bubbles, triangles and boxes =- only bubbles dominant NNLO
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Corrections to the Coulomb potential

Fermion-loop corrections to the Coulomb force between resonant W’'s

Bubbles, triangles and boxes =- only bubbles dominant NNLO

Bl = 5o -0t {aim(Fpe Y m [n(- G )] m (-G )]}

2mad, o Ew
Aoy, = Aoz|amy) — ?e: Sa(Mz)—G, Im {|n<—w)}

re-summation of large fermion-mass logs in the a(Mz ) — G, [Dittmaier-Kramer '01]

(as for NLO result [Beneke-Falgari-Schwinn-Signer-Zanderighi '07])
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Corrections specific of the EFT

Decay corrections: flavour-specific corrections to the decay of the
resonant W's to .~ 7, and ud

(1 1
ru*?# rfja) 27ra§,wa gW
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single Coulomb
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Corrections specific of the EFT

Decay corrections: flavour-specific corrections to the decay of the
resonant W's to .~ 7, and ud

(1 1
ru*?# rfja) 27ra§,wa gW
AO’3 = — o) —+ —0) —— In|{—-———
r _ r 27s Mw

single Coulomb

Residue corrections: matching coefficient for the production operator
dressed with WFR factors

Aos — amodua Tw | <28W|(ReEW + 5W|)>

27s My rz,
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Results for the total cross section

60/0gom (%]

— N30 o (th)
03 o G \/s [GeV] Born + NLO NNLO only
02 Cxdecay 158 45.64(2) 49.19(2) 0.000 [+-0.00%
R & i g;'es 161 108.60(4) 117.81(5) 0.087 [+-0.06%
01l - T 164 219.7(0) 234.9(1) 0.544 [+0.18%
- 167 310.2(1) 328.2(1) 0.936 [+0.23%
160 162 164. 166168 17O\E[GGV| 170 378.4(2) 398.0(2) 1.207 [+0.25%

| b
01 T
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Results for the total cross section

60/0gom (%]

— N30 o(fb)

03 T \/s [GeV] Born + NLO NNLO only
02 " Cxdecay 158 45.64(2) 49.19(2) 0.000 [+0.00%
e/ o Gy 161 108.60(4) | 117.81(5) || 0.087 [+0.06%
01| B 164 219.7(1) 234.9(0) 0.544 [+0.18%
’ 167 310.2(1) 328.2(1) 0.936 [+0.23%

0,
60 163 164 186 168 ivo VSICGeVl 170 378.4(2) 398.0(2) 1.207 [+0.25%

| b
01 e
70.2L\,/’/

o Individual contributions to the total cross section at threshold
from —0.2% to +0.3%
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Results for the total cross section

60/0gom (%]

— N30 o(fb)
03 o G \/s [GeV] Born + NLO NNLO only
02 7T Crdesay 158 7564(2) | 49.19(2) || 0.000 [+0.00%
il - Ces 161 108.60(4) | 117.81(5) || 0.087 [+0.06%
01} B . 164 219.7(1) | 2349(1) || 0.544[10.18%
' 167 310.2(1) 328.2(1) 0.936 [+0.23%
0,
e e T e Do VSlGeV! 170 378.4(2) 398.0(2) 1.207 [+0.25%
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o Individual contributions to the total cross section at threshold
from —0.2% to +0.3%

e Screening effect = combined effect below the permille level
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Results for the total cross section

60/0gom (%]

— N30 o(fb)
03 o G \/s [GeV] Born + NLO NNLO only
02 Crdecay 158 7564(2) | 49.1902) 0.000 [+0.00%
e - Ces 161 108.60(4) | 117.81(5) || 0.087 [+0.06%
01l T 164 219.7(1) 234.9(1) 0.544 [+0.18%
- 167 310.2(1) 328.2(1) 0.936 [+0.23%
e e T e Do VSlGeV! 170 378.4(2) 398.0(2) 1.207 [+0.25%
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o Individual contributions to the total cross section at threshold
from —0.2% to +0.3%

e Screening effect = combined effect below the permille level

e Conversion of shift on cross section — shift on W mass = effect
of NNLO corrections below 6 MeV accuracy expected at the ILC

(60 ~ 1% = My ~ 15 MeV)
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For practical applications, experimental cuts are needed; complicated
in the EFT because they introduce new scales
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Effect of experimental cuts

For practical applications, experimental cuts are needed; complicated
in the EFT because they introduce new scales

Estimate of the effect of cuts using WHIZARD [Kilian-Ohl-Reuter '07] for
the SM Born result and the L3 cuts

Cut opom(e_e" — p~v,ud)(fh) Tcut/ Ttot
- 154.18(5)
[6.] > 20GeV 153.71(5) 99.69(5) %
M, > 55 GeV, 40 GeV < My < 120 GeV 150.61(5) 97.68(5) %
6,j > 15 degrees 149.35(5) 96.87(5) %
[cosf,| <0.95 148.28(5) 96.17(5) %
[ all [ 140.03(5) [ 9082(5)% |

e cut on the muon momentum negligible

e cuts on the invariant masses of pairs of decay products can be
implemented in the EFT; do not affect dominant NNLO terms

e angular cuts more complicated; not relevant since NNLO
corrections are very small
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Conclusions

> Using EFT methods for unstable particles it has been possible to
evaluate all parametrically dominant NNLO corrections to
four-fermion production at the WW threshold
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Conclusions

> Using EFT methods for unstable particles it has been possible to
evaluate all parametrically dominant NNLO corrections to
four-fermion production at the WW threshold

> Even if finite-width effects are handled in a different way in the EFT
respect to the full result in the CMS, the NNLO subset of corrections
can be implemented in both schemes without modifications
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Conclusions

> Using EFT methods for unstable particles it has been possible to
evaluate all parametrically dominant NNLO corrections to
four-fermion production at the WW threshold

> Even if finite-width effects are handled in a different way in the EFT
respect to the full result in the CMS, the NNLO subset of corrections
can be implemented in both schemes without modifications

> Each diagram contributes between —0.2% and +0.3%, but large
cancellations occur. The impact of the result on the W-mass
determination is well below the 6 MeV goal at the ILC
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