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Contents of  LINAC-II

• Beam quality preservation

– Luminosity

– Linac optics

– Perturbations

– Wake field

– Wake field suppression

– Alignment to beam

– Breakdown rate

– Dark current

– Summary of LINAC-II
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Energy and luminosity
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Luminosity
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Luminosity related parameters

• Important parameters relevant in this lecture are

– Beam transverse size
• Main theme of this lecture

– Number of bunches in a train
• Long-range wake field

– Number of particles in a bunch
• Short range wake field

– Repetition frequency
• Wall plug power
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Requirements for linear collider 

• Beam quality from DR and BC should be preserved.

• Phase space
– Longitudinal

• Energy acceptance of the final focus

– Transverse 

• Emittance preservation to keep beam size small

• Wake field
– Single bunch:  

• Short range (intra-bunch) wake field

• Dispersive effect in the bunch

– Multi-bunch:  

• Long range (inter-bunch) wake field among bunches

• Bunch to bunch dispersive effect

6



Linac example parameters
ILC and CLIC
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Item units ILC(RDR) CLIC(500)

Injection / final linac energy ELinac GeV 25 / 250 / 250

Acceleration gradient Ea MV/m 31.5 80

Beam current Ib A 0.009 2.2

Peak RF power / cavity Pin MW 0.294 74

Initial / final horizontal emittance ex mm 8.4 / 9.4 2  / 3

Initial / final vertical emittance ey nm 24 / 34 10 / 40

RF pulse width Tp ms 1565 242

Repetition rate Frep Hz 5 50

Number of particles in a bunch N 109 20 6.8

Number of bunches / train Nb 2625 354

Bunch spacing Tb ns 360 0.5

Bunch spacing per RF cycle Tb/ TRF 468 6



Linac example parameters
ILC and CLIC
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Item units ILC(RDR) CLIC(500)

RF frequency F GHz 1.3 12

Beam phase w.r.t. RF degrees 5 15

EM mode in cavity SW TW

Number of cells / cavity Nc 9 19

Cavity beam aperture a/l 0.152 0.145

Bunch length z mm 0.3 0.044

ILC parameters are taken from Reference Design Report of ILC for 500GeV.

CLIC500 parameters are taken from the talk by A. Grudief, 3rd. ACE, CLIC Advisory Committee, 

CERN, Sep. 2008, http://indico.cern.ch/conferenceDisplay.py?confId=30172.



Bunch pattern
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Many bunches / train

Many rf cycles (~103) till next bunch

z/l~0.0013

Only 6 rf cycles till next bunch

z/l~0.0018  actual z 10 times smaller

ILC
2625 bunches / pulse

468 rf / separation

z=300mm

CLIC
354 bunches / pulse

6 rf / separation

z=44mm



Bunch profile and power spectrum
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Emittance 
dilution / preservation
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Emittance preservation
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Emittance preservation along the linac is one of 

the key issues of the main linac of LC.

Emittance in 6 dimensions;

Single bunch emittance vs multi-bunch emittance

Longitudinal emittance vs transverse emittance in X and y

Error sources for dilution should be minimized.

Better alignment, wake field suppression, etc.

But if diluted, we try to correct

by realignment, corrector fast magnets, etc.

Coherent dilution can be corrected but it phase space volume is 

fully filled in an incoherent manner, it cannot be corrected.

Multi-bunch dilution can be corrected bunch by bunch correction.



Very basic optics of linac 
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Transverse emittance
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Practical errors to be considered

• Optical error and misalignment
– Field stability in Q

– Misalignment of  Q, structures and BPM

• RF error
– Phase, amplitude jitter

– Pulse to pulse, within pulse,

– Asymmetry in cavity to time dependent transverse kick

• Wake field
– Long range  and short range

– Longitudinal and transverse
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Possible cares and corrections

• Optical error and misalignment
– Alignment with using beam information

– BPM information, on- /off-energy, on- /off- Q setting

• RF error
– Feedback with cavity field

– Mechanical precision of cavity, offset, tilt, 

– Suppression of field asymmetry

• Wake field
– Cavity HOM damping and cancelling

– Multi-bunch energy compensation with injection timing, 
ramping  pattern, etc
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Wake field and 
impedance
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Wake fields driven by relativistic particle
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Lorentz contracted field

In free space

1/

EM field associated to the particle is 

scattered by periphery shape.



Wake field
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Driving bunch: Unit charge bunch at 

offset radius r

Witness bunch: trailing at z=ct behind

Wake field W(s) is the kick received 

by the witness bunch.
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Panofsky-Wenzel theorem
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Cylindrical symmetric system
and multipole expansion
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Impedance 
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Impedance: Fourier transform of the wake function
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Actual impedance shape
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Loss parameter
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Longitudinal wake function in DLS
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Summation of resonant modes up to a certain frequency, 

Higher than the frequency, and in high energy limit >>a/c, 

optical resonator model predicts
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Transverse wake function in DLS
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We follow a paper* by Zotter and Bane on transverse wake field 

calculation on disk-loaded structure.

*  B. Zotter and K. Bane, “Transverse Resonances of Periodically widened Cylindrical Tube with 

Circular Crosssection”, PEP-Note-308, SLAC, 1979.

Synchronous space harmonic component of the n-th TW mode, axial electric field is 
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Transverse wake field (cont.)
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Finally for the transverse  wake field,
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Dipole wake field parametrization
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Single-bunch beam 
dynamics and cures
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Beam dynamics under shot range 
transverse wake field
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Force and momentum change in transverse direction;
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Two particle model view
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If no acceleration case;
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Growth estimation 
in two particle model
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More general but constant energy case
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Linear slope wake and square bunch
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Take energy gain into account
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With linear slope wake and energy gain

36









z

e yzywysady
rN

akj
s

a
kj )()(),(

4'
2 0 l



e






)(/),(),( szsbzsa 

This time let us define









z

e yzywysbdy
sk

rN
j

s

b
)()(),(

)(2

4 0 l


e



Then the equation becomes

This is exactly the same as a(s,z) case but with varying (s)

Let us define coordinate S
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This form is also exactly the same as that of a(s,z) before.

This has an asymptotic form as a.



Solution of growth 
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Assume uniform acceleration
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BNS damping
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Equation of motion in the two particle model,

The tail particle resonant growth is suppressed. In FODO lattice,
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We make the energy variation within a bunch to introduce variation of k

This suppression is called BNS damping.
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Varying the tail particle oscillation frequency from that of the head particle,

&

In practice;

Energy tapering can be produced by setting the bunch in RF slope. 

The longitudinal wake function help decreased the energy toward the tail.



Autophasing
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The solution becomes simply 
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This is stable and x does not depend on z, 

which means the both head and tail stays as 

in the right figure. 

x

X’ Single bunch

Correctable

Coherent

Correctable

This suppression scheme is autophasing.

The slope on k is produced by energy profile inside the bunch with 

amplitude of the order of
'02 4
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
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The big energy slope should be compensated at the downstream of linac.

Start with the equation of motion;



Long range wake field
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Fundamental theorem of beam loading

0:  Assume a cavity field in phasor

diagram with one dominant mode

tjeVtV )(

1:  Point particle passed an empty cavity, 

leaving a field, wake field,

Vc=t
2:  When the second bunch comes in, 

superposition applies;
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Fundamental theorem of beam loading cont.

While loss of the second bunch;

)(2 e   CosVqVqE be

Since particle energy loss = cavity stored energy;

  221 UEE

Therefore,
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This should always true for any , then
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When a bunch passes a cavity, 

it excites the cavity with the field in a decelerating direction, 

or it remains a deceleration wake field in the cavity. 

The bunch feels half of this excited field.



Long range wake field in a cavity
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Longitudinal wake excited in a cavity is expressed as

In a cavity with very high Q value,

Longitudinal wake field behaves cosine-like. The bunch is decelerated 

and excite the field in the cavity. Point-like bunch suffer from the wake, 

deceleration.

Transverse wake behaves sine-like. It increases linearly in time at very 

short time, usually within the bunch.
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Calculation of impedance in SW or TW 
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For transverse mode;
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Calculation of kL by SW field solver
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For SW cavity;
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For TW cavity;
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where only n=0 space harmonics contributes;
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When we consider SW field, SW = FW + BW;
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Loss parameter formula
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When we consider the coupling of beam to TW mode, the relevant 

energy is only the forward wave, which is half of USW
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Therefore, E0 can be calculated as 



Transverse wake calculation
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Transverse wake field excited by a bunch with charge q passing a cavity 

with transverse position offset of r, 

The wake field due to this field is expressed
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For SW case, from Panofsky Wenzel,



Transverse wake calculation (cont.)
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The energy of the cavity excited by charge q with offset r is equal to the 

energy loss if the bunch interacting with the field excited by itself,
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The equation (#) is found proven. (This is for SW case)

In the TW case, as in the longitudinal wake,

SWTTWT kk ,, 2

Therefore, 

L
Q

R
kk

T

TWT /

'

2

, 











Frequency scaling 
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Dipole mode field to calculate R/Q
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Let us take the most typical dipole mode, TM1nl, 

in a pillbox cavity



Dipole mode field to calculate R/Q (cont.)
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Comments on dipole mode
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Firstly note that TE mode cannot couple to beam 

because of no Ez field!

Secondly, there are two polarization in dipole modes 

with the same field pattern.

Therefore, it is necessary to separate in frequency 

for these modes to be stable unless the two 

polarizations can be divided by geometry condition.



Actual higher order modes
examples
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Actual modes in 9-cell SCC cavity
Measurement setup 

NA Al shorting plate

Inner side Outer side



Transmission measurement  1.5~3GHz
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Beam excitation of modes
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• Beam interacts mostly near vp=c line.

• Everyband can be excited by beam.

• Most concern is the lowest dipole modes.
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X-band detuned structure
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(a,t) distribution 

along structure

Dipole mode

distribution in 

frequency and 

kick factor 

Contour of dipole mode 

frequency vs (a,t)



Beam excited modes in detuned 
structure
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Trapped modes

Position-modal 

frequency 

dependence

Beam excitation

UP

Middle

Down

vp=c

Excited modes

Should be 

damped

Can be used 

as SBPM



Actual modes in X-band structure
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Extract a part along structure and stack 6 identical cells.

Measure dispersion  characteristics to confirm the HOM.



Ways to deal with 
coupled cavity system on 

HOM estimation
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Various ways of treatment

• Equivalent circuit model

• Matching

– Mode matching

– S-parameter 

– Open mode expansion model

• Mesh based Numerical

– Finite element model  HFSS, 2

– Finite difference model  MAFIA, GdFidl, 

61



Mode matching techniques
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Propagating mode

Resonant mode

Field matching

Propagating mode

Field matching

Resonant SW mode

Field matching

Mode 

matching

Scattering 

matrix

Open mode 

expansion

Field 

matching

Expansion modes 

in cylindrical 

waveguide

SW & TR field 

matching

S-matrix for 3D 

cal can be used

Resonators 

with small 

coupling 

between 

cells



An example: 
Open mode expansion technique
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Calculated field for 150-cell cavity
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Calculation result
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Finite element or finite difference
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• 3, MAFIA,   GdfidL,   HFSS

• Parallel PC arrays today can deal with the whole cavity 
in 3D as a whole.

• This is a final confirmation but these are becoming to 
even the tool in early design stage.

Example: SCC 9-cell cavity simulation with 3D FEM  (Z. Li, SLAC)



Cures against multi-
bunch emittance growth 

by suppression of 
wakefield
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Cures from structure design
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There are two ways of suppressing wake field.

One is to align beam to axis, while the other is to suppress wake field.

Transverse wake field is expressed as

Damping the mode with low Q

Effectively lower Q by frequency spread

Intrinsic Q0 is too 

large.

Both ILC and CLIC 

need external 

damping.

X-band approach  

utilizes this.
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External coupling   ILC and CLIC
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It is not easy to make Q very low by external coupling.

This results in the application of frequency spread for effective damping 

(cancellation) of wake field in addition to low Q.

Quadrant-type heavily 

damped structure

Q ~105

Q ~101



Detuning to make frequency spread

Frequency 

distribution

Fourier 

transform

Wake 

field
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Cancellation 

of wake field
As of 

excitation by 

beam
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Calculation with equivalent circuit

71

Geometry parameters along a 

structure is distributed to make 

the coupling to beam (kick 

factor) as gaussian like. 
Analyse the whole system with coupled 

resonator equivalent circuit model. 

pioneered by K. Band and R. Gluckstern

and explored by R. Jones.



Moderate damping by
extraction of dipole modes into manifold
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Distribution of (a, t) and 
introduction of damping

• Faster damping need larger 
width

• Truncation makes tail up in wake 
field

• DS detuned only  DDS damped 
detuned

• Recurrent due to finite number 
of distribution points

• Interleaving makes longer 
recurrent
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Result of equivalent circuit model 
calculation and estimate of tolerances
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Wake field calculation based 

on frequency error info from 

fabrication.
Wake field simulation with more 

frequency errors to investigate 

frequency tolerances.



Actual design (RDDS1) and typical cells
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Input / output 

waveguide
HOM damping 

waveguide

Detuned cells

Manifold to carry 

HOM to outside



Frequency control of actual structure
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RDDS1 dispersion
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Proof of wake field in RDDS1
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Cures by improving 
alignment
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One-to-one steering

80

If every BPM is aligned perfectly to the magnetic center of 

each quadrupole magnet, it is easy to adjust the beam 

with respect to those quad’s. Just align the beam to zero 

the BPM reading. 

Changing the Q strength  transverse kick measured at 

downstream BPM’s to know the beam position w.r.t. Q 

center and BPM calibration.

By

x

It is straightforward way but suffers from errors in BPM 

reading, BPM misalignment w.r.t. Q magnet, etc.

This is the local correction, but there is better way of 

correcting more globally, DF or WF correction scheme.



DF and WF correction
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The equation of motion in transverse plane in high energy linac;
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 = E/E, 

G(s) steering field, K(s) = Q magnetic field, 

Wt = transverse wake field, N = number of particles in a bunch, 

re = classical electron radius,

(z,d) = charge distribution, 

xq = Quad misalignment, xa structure misaligment
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Equation of motion and force term
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The equation for the difference are in the first order approximation
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Dispersion free (DF) correction
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In the first order approximation, the solutions for these are written as the 

transferred position originated from the kick at s’ upstream 
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In reality, from the i’th BPM reading mi and its difference mi with their predicted 

values, xi and xi, minimization does dispersion free correction;
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Wakefield free (WF) correction
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In the first order approximation, the solutions for these are written as the 

transferred position originated from the kick at s’ upstream 
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Wake field term cannot be cancelled out  by  term because of constant W t while alternating in 

K(s’). Taking QF only or QD only makes the correction of W t. 



Wakefield free (WF) correction
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In reality, from the i’th BPM reading mi and its difference mi with their predicted 

values, xi and xi, minimization does wake field free correction;
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Where the xi
QF and xi

QD are those difference orbit due to the variation of only 

QF and QD.

Method ey
Trajectory  rms

1-to-1 23 ey0 72 mm

DF 9 ey0 55 mm

WF 1 ey0 44 mm

Correction example; NLC case from T. Raubenheimer, NIM A306, p63,1991.



Alignment with using excited field 
in the actual structure
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If we measure dipole mode in a structure, we can estimate the position 

of beam which excites the mode. The coupling is linear as offset.

If the modal frequency depends on the position of the mode, it 

can distinguish the position there by frequency filtering.

In such cavity as ILC, it can be done with using power from 

HOM couplers.

In such cavity CLIC, it can be done with extracted power from 

manifold or damping waveguide.

Both directions x and y are measured with distinguishing two modes in 

different polarizations, almost degenerate but with some frequency difference.



Alignment measurement in situ as SBPM
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Dark current issue
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Dark current

89

What is dark current?
Dark current is a stable emission of electrons under high field. 

DC field emission is the tunneling feature of electron migration near surface.
It is studied by Fowler-Northeim.

Here work function and field enhancement factor play important roles.
Actually the field E0 is replaced by  the local field E0.

RF field emission is estimated to be the superposition of DC field emission.
It is calculated by J. Wang and G. Loew.
It should exist in ant RF field, whether or not in SW and TW or in NCC and SCC .

Tracking of FE electrons are studied by various authors.
Nowadays, numerical tracking is usual one.
Simple analytical estimate gives minimum threshold field for capture.
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Acceleration in linear accelerator
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Finally, by combining these equations, 

If, p~, then  is slowly varying function. 
Therefore, only n=0 is dominant.

Plot the contour of this equation with A 
in the next page.

Acceleration field is expressed as the summation of 
all space harmonics in the periodic structure.

R. Helm and R. Miller, in Linear Accelerators, ed. by 
P. M. Lapostolle and A. L. Septier, North-Holland 
Publishing Co., 1970 90



Separatrics
describing longitudinal motion
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Capture threshold

Minimum field e0 for being tramped, eq. to being max in left-hand side,
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For zero-energy electron, p=0 to be captured, 
the minimum field becomes 
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Tolerable breakdowns or 
quenches
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To keep the beam energy under RF failure

94

It is important to make the integrated luminosity high by keeping 

the instantaneous luminosity high.

Once some failure happens in some cavity, the power feeding the 

cavity or the bunch of cavities is shut off. 

In such a system as CLIC two beam scheme, the off-timing 

operation cannot be applied and gradual power recovery is needed.

During this recovery period, other cavities than nominal should be 

used to keep the beam energy. Therefore, linac needs extra 

acceleration capability than the nominal one.

Then, the power or pulse width will be recovered taking some 

pulses starting from a little lower power level. During this period, 

the cavities in recovering mode are off in timing from acceleration 

for the linac if powered by independent power supply. 

Extra spare cavities or extra power/gradient capability is required. 



Simple estimation of tolerable failure rate
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Rfail failure rate for a cavity (1 trip / N pulses)

Trec recovery time in the unit of pulses 

Number of failures during the recovery time for a cavity

recfailstrunit TRNN

It should be less than the number of spare units

unitrecfailstrunit NTRNN 

Then the tolerable failure rate is
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In this example,

An example;

Order estimation

Nunit Nstr  Nunit Nstr

Nominal Spare

Compensation with spare cavitires:



Reduce failure rate or more margin 
in accelerator gradient

• Cares on SCC system
– Margin of accelerator gradient

• Increase quench field due to Hs

• Suppress FE

• Increase Q0

• Variable feeding system

– Mechanical long life for tuner

• Reduce breakdown rate in NCC
– Possible trigger source of breakdown

• Surface quality chemically and physically

• Reduce micro protrusions 

• Reduce pulse temperature rise?
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Pulse temperature rise

Pritzkaw Thesis,  p99, SLAC-Report 577.
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Surface heating and heat diffusion into body.
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V. Dolgashev and L. 
Laurent, AAS08

Pulse heated 
surface

There may trigger 
breakdowns.




p

w

c

txP
txutxu

t

),(
),(),( 2 





Cu
Rs=27.85m

Hs=1MA/m
Tp=400ns=4*10^-7
=8.93 10^3 kg/m^3
Ce=380 J/kg/K
d=k/ce= m^2/s
k=401 W/m/K

T=270degC
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Care in complicated shape formation

We need to avoid additional local field enhancement 

due to non-smoothness especially at red areas.

Special care is taken at points (2,3,4) where smooth junction is difficult 

due to the junction between milling and turning

1

2

3

4

Esurface HsurfaceTpulse



Summary of LINAC-II

• By keeping the emittance growth within a tolerable level, the 
luminosity will be kept.

• Various sources, especially wake-field origin, were discussed.

• Various cures on HOM origin are discussed.

• Cares on alignment to suppress single-bunch wake field was 
discussed, using structure BPM and BBA.

• These perturbations and cures are almost similar to both 
warm and cold linac.
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