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Bhabha Scattering and Luminosity-I

e+e− −→ e+e−

p1 → p3 →

p2 → p4 →

e− e−
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I Effective tool for the Luminosity measurement @ e+e− colliders

σexp ≡ N

L
L =

N

σbh-th
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Bhabha Scattering and Luminosity-II

I In the region employed for L measurements the Bhabha scattering
cross section is large, QED dominated, and measured with very high
precision (1 permille at KLOE/DAFNE)

I SABH is employed at LEP and ILC, while LABH is employed at
colliders operating at

√
s = 1 − 10GeV

I Due to beam-beam interactions, at ILC the colliding energy
√

s shows
a continuous spectrum: the LABH can also be used to determine the
luminosity spectrum

I Realistic simulation of Bhabha events are performed by sophisticated
MC generators which take into account the detector geometry,
experimental cuts, theoretical input (fixed order calculations,
resummation)
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√
s = 1 − 10GeV

I Due to beam-beam interactions, at ILC the colliding energy
√

s shows
a continuous spectrum: the LABH can also be used to determine the
luminosity spectrum

I Realistic simulation of Bhabha events are performed by sophisticated
MC generators which take into account the detector geometry,
experimental cuts, theoretical input (fixed order calculations,
resummation)

The accuracy of the theoretical evaluation of the Bhabha scattering cross
section directly affects the luminosity determination

=⇒ study of radiative corrections to Bhabha scattering
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Warning

M = −

I In this talk we consider the QED process only

I We consider differential cross-sections summed over the spins of the final
state particles and averaged over the spin of the initial ones

dσ0(s, t)

dΩ
=

α2

s

{

1

s2

[

st +
s2

2
+ (t − 2m2)2

]

+
1

t2

[

st +
t2

2
+ (s − 2m2)2

]

+
1

st

[

(s + t)2 − 4m4
]

}
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Virtual Corrections to the Cross Section -I

dσ(s, t)

dΩ
=

dσ0(s, t)

dΩ
+
(α

π

) dσ1(s, t)

dΩ
+
(α

π

)2 dσ2(s, t)

dΩ
+ O

(

(α/π)3
)

The O(α3) virtual corrections (one-loop × tree-level) are well known (in the full
SM), no problem in keeping me 6= 0

M. Consoli (1979),

M. Böhm, A. Denner, and W. Hollik (1988),

M. Greco (1988),...

(α

π

) dσV
1 (s, t)

dΩ
=

s

16

∑

spin
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−
)

∗

× + c.c. + · · ·
}
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Virtual Corrections to the Cross Section -II

Order α4QED corrections:

I Contributions from two-loop × tree-level and one-loop × one-loop

I Can be divided in three sets,
i) with a closed electron loop,
ii) closed heavy(er) flavor loop, and
iii) photonic (without fermion loops)

(α

π

)2 dσV
2 (s, t)

dΩ
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s

16
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−
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Radiative corrections in me = 0 approximation

The virtual corrections where first obtained in the massless electron
approximation

Z. Bern, L Dixon, and A. Ghinculov (’00)

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO LCWS08 9 / 27



Radiative corrections in me = 0 approximation

The virtual corrections where first obtained in the massless electron
approximation

Z. Bern, L Dixon, and A. Ghinculov (’00)

However, in order to interface the fixed order calculation with the existing
MC, it is necessary to keep the electron mass as a collinear regulator
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Electron Loop Corrections
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α4 Electron Loop Corrections

All the two-loop graphs including a closed electron loop can be calculated also

keeping me 6= 0 and without relying on any approximation or expansion

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ Born
Amplitude
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α4 Electron Loop Corrections

All the two-loop graphs including a closed electron loop can be calculated also

keeping me 6= 0 and without relying on any approximation or expansion

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ Born
Amplitude

I The relevant integrals can be reduced to combination of a relatively small
set of Master Integrals employing the Laporta algorithm

I The MIs (including the ones for the box) can be evaluated employing the
differential equation method

R. Bonciani et al.(’03-’04)
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α4 Electron Loop Corrections-II

In the electron loop corrections to the CS

I both UV and IR divergences are regularized within the DIM REG
scheme

I the UV renormalization is carried out in the on-shell scheme

I the graphs are at first calculated in the non physical region s < 0 and
then analytically continued to the physical region s > 4m2

e

I the cross section can be expressed in terms of HPLs and 2dHPLs with
arguments

x =

√
s −

√

s − 4m2
e√

s +
√

s − 4m2
e

y =

√

4m2
e − t −√−t

√−t +
√

4m2
e − t

z =

√

4m2
e − u −√−u

√−u +
√

4m2
e − u

I The residual IR poles are eliminated by adding the contribution of the soft
photon radiation
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Photonic Corrections
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O(α4) Photonic Corrections

With the same techniques employed in obtaining the O(α4(NF = 1))
non-approximated differential CS, it is possible to calculate the photonic virtual
corrections (and related soft photon emission) to the CS at order O(α4), except
for the ones arising from the the two loop photonic boxes

R. Bonciani, A. F. (’05)

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ ⊗ ⊗

The one- and two-loop Dirac form factors in the t-channel are sufficient to
determine completely the small angle cross section

dσ2

dσ0
= 6(F1

(1l)(t))2 + 4F1
(2l)(t)
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α4 Photonic Corrections-m2
e/s Expansion

I Building on the BDG result and on works by A. B. Arbuzov et al., B. Tausk,
N. Glover, and J. J. van der Bij (’01) obtained the terms proportional to
L = ln m2

e/s of the full (virtual + soft) photonic CS (i. e. graphs including a
closed electron loop have been neglected)

I A. Penin (’05) obtained also the constant terms of the photonic CS in the
m2

e/s expansion

Therefore, in the expansion

dσ2

dσ0
= δ

(2)
2 ln2

(

s

m2
e

)

+ δ
(1)
2 ln

(

s

m2
e

)

+ δ
(0)
2 + O

(

m2
e

s

)

δ
(2)
2 , δ

(1)
2 , and δ

(0)
2 are known

I Several partial cross-checks of this results were possible by comparing it with
the m2

e/s → 0 limit of the exact result for the photonic vertex and one-loop
by one-loop corrections
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Mass from Massless-I

As can be seen from Penin’s result, when neglecting positive powers of the
electron mass, the problem is equivalent to change the regularization
scheme for the collinear singularities:

Is it possible to calculate graphs employing DIM REG to regulate both soft
and collinear singularities and then translate a posteriori the collinear poles
into collinear logs?
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Mass from Massless-I

As can be seen from Penin’s result, when neglecting positive powers of the
electron mass, the problem is equivalent to change the regularization
scheme for the collinear singularities:

Is it possible to calculate graphs employing DIM REG to regulate both soft
and collinear singularities and then translate a posteriori the collinear poles
into collinear logs?

For a generic QED/QCD process, with no closed fermion loops

M(m 6=0) =
∏

i∈{all legs}

Zi

1
2 (m, ε)M(m=0)

where Z is defined through the Dirac form factor

F (m 6=0)(Q2) = Z (m, ε)F (m=0)(Q2) + O(m2/Q2)

A. Mitov and S. Moch (’06)
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Mass from Massless-II

with a similar technique applied to Bhabha scattering it was possible to
calculate all the NNLO corrections in the limit s, |t|, |u| � m2

f � m2
e

T. Becher and K. Melnikov (’07)

dσ

dΩ
=

α2

s

(

1 − r + r2

r

)[

1 +
α

π
δ1 +

(α

π

)2
δ2

]

(r = 1/2(1− cos θ))

δ2 = δ
photonic
2 + δ

electron loop
2 + δ

heavy flavor loop
2

photonic corrections in agreement with A. Penin (’05)

electron loop corrections in agreement with R. Bonciani et al

(’04)

“heavy flavor” loop corrections in agreement with S. Actis et al

(’07)
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Heavy Fermion Corrections
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Beyond s � m
2
f

In any realistic case the approximation s, |t|, |u| � m2
e is more than enough

However, in the case of corrections with a closed heavy fermion loop, it is
not always true that s, |t|, |u| � m2

f
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e is more than enough

However, in the case of corrections with a closed heavy fermion loop, it is
not always true that s, |t|, |u| � m2

f

for example

I τ loop at KLOE, where
√

s = 1GeV < mτ

I top quark loop at ILC, where
√

s ≈ 500GeV and m2
t /t,m

2
t /u < 1 just

in the angular region 40o < θ < 140o
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Beyond s � m
2
f

In any realistic case the approximation s, |t|, |u| � m2
e is more than enough

However, in the case of corrections with a closed heavy fermion loop, it is
not always true that s, |t|, |u| � m2

f

for example

I τ loop at KLOE, where
√

s = 1GeV < mτ

I top quark loop at ILC, where
√

s ≈ 500GeV and m2
t /t,m

2
t /u < 1 just

in the angular region 40o < θ < 140o

It is necessary to calculate the NNLO corrections including an heavy
fermion loop by retaining the exact dependence on mf

s, |t|, |u|,m2
f � m2

e

this is a non trivial problem involving four-scale two-loop boxes . . .

=⇒
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Structure of the Collinear Poles

What is the collinear structure of these corrections?

δ2 = δC
2 (s, t,m2

f ) ln

(

s

m2
e

)

+ δR
2 (s, t,m2

f ) + O
(

m2
e

s

)

there is just a single collinear logarithm
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Structure of the Collinear Poles

What is the collinear structure of these corrections?

δ2 = δC
2 (s, t,m2

f ) ln

(

s

m2
e

)

+ δR
2 (s, t,m2

f ) + O
(

m2
e

s

)

there is just a single collinear logarithm

It is possible to show that the collinear logarithm arises from trivial
reducible graphs only

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO LCWS08 20 / 27



The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in
the small electron mass me
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Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO LCWS08 21 / 27



The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in
the small electron mass me

This means that we can set me = 0 from the beginning, getting rid of one
scale

In the Feynman gauge

+ = Free of collinear poles

u = −s − t

After UV renormalization, the only remaining poles are the IR (soft) ones
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Technical Details

R. Bonciani, AF, and A. Penin (’07-’08)

I It was possible to calculate the boxes for me = 0 and generic
s, |t|, |u|,m2

f � m2
e , therefore effectively eliminating one mass scale

from the most challenging part of the calculation

I We employed IBPs and Differential Eq. Method

I The analytical result can be expressed in terms of HPL and a few
GHPLs of a new class. The latter can be expressed in closed form in
terms of polylogs

I by expanding the exact result it was possible to recover the result of
Actis et al and Becher Melnikov

I It now is possible to study the τ loop effects at intermediate energies
and top loop effects at ILC energies, where the s, |t|, |u| � m2

f

approximation is not valid
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Results

0.1

1

0.1 1√

s (GeV)

exact
large-mass
small-mass10

4
·d

σ
(2

) /
d
σ

(0
)

Two-loop corrections to the Bhabha

scattering differential cross section at

θ = 60◦ due to a closed muon loop

0
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6

0 20 40 60 80 100 120 140 160 180

θ

√
s = 500 GeV

10
4
·d

σ
(2

) /
d
σ

(0
)

Two-loop corrections to the Bhabha

scattering differential cross section at
√

s = 500 GeV due to a closed loop of

t-quark (mt = 170.9 GeV).

The large logs depending on the IR cut-off ω are excluded from the
numerical analysis
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Numerical Analysis

The actual impact of the two-loop virtual corrections on the theoretical
predictions can be determined only after the corrections are implemented into MC
event generators

However, for ILC it is possible to conclude that

The heavy flavor corrections are dominated by the collinear logs ln (s/m2
e )

Top corrections (including O(ααs )) corrections reach ∼ 0.5 permille for
θ > 140o

Very large terms proportional to ln3 (s/m2
f ) cancel against the contribution

of (soft) real f -pair emission

The contribution of the all of the light quarks must be treated with the
dispersion relation approach, because of low-energy strong interaction effect
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Dispersion Relation Approach

Alternative way to calculate diagrams with closed fermion loops

replace the photon propagator on which one wants to insert a fermion
loop as follows

δµν

q2
−→ δµν

q2

(

q2δµν − qµqν

)

Π
(

q2
) δµν

q2

apply the subtracted dispertion relation

Π
(

q2
)

= −q2

π

∫ ∞

4m2

dz
ImΠ (z)

z

1

q2 + z

relate the self energy imaginary part to the decay rate of an off-shell
photon

ImΠ (z) = −α

3
R(z) ≡ −α

3

σ
(

e+e− → γ∗ → f f
)

4πα2/3

perform first the integration over the photon momentum q and then
the integration over z
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Dispersion Relations and Bhabha Scattering

S. Actis et al (’07-’08)

J. Kühn, S. Uccirati (’08)

The procedure based on dispersion relations can be applied to Bhabha
scattering in a two-step calculation

analytic evaluation of the one-loop kernels with a “massive” photon
numerical integration over z
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J. Kühn, S. Uccirati (’08)

The procedure based on dispersion relations can be applied to Bhabha
scattering in a two-step calculation

analytic evaluation of the one-loop kernels with a “massive” photon
numerical integration over z

Hadronic Corrections

The corrections related to the hadronic vacuum polarization can be
obtained by taking Rhad(z) from e+e− → hadrons data

At the ILC, hadronic corrections give the

largest effect at large angles (< 2%)
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Summary & Conclusions

I A precise knowledge of the Bhabha scattering cross section (both at
small and large angle) is crucial in order to determine the luminosity
at e+e− colliders

I Photonic and electron loop corrections have been known for some
time. Recently, we calculated also the heavy flavor NNLO corrections.
This was done with a technique that effectively eliminates one mass
scale from the most challenging part of the calculation and provides
result in closed analytical form

I The hadronic corrections were evaluated by two groups with an
approach based on dispersion relations

I The calculation of the virtual NNLO QED corrections is basically
complete, but there is still work to be done: ex. one-loop hard photon
emission

I These fixed order results must be included/interfaced with MC
generators
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Backup Slides



Penin’s technique (in a Nutshell)

I Consider the amplitude of the two loop virtual corrections to the
cross-section in which collinear and IR divergencies are regularized by
me and λ: A(2)(me , λ)

I Build an auxiliary amplitude A(2)
(me , λ) with the same IR

singularities of the A(2)(me , λ) but sufficiently simple to be evaluated
in the small mass expansion

I The quantity δA(2) = A(2) −A(2)
has a finite limit when me and λ

tend to zero

I δA(2) is regularization scheme independent and it can be
reconstructed from the known results for the virtual corrections
calculated by setting me = λ = 0 from the start
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Penin’s technique (in a Nutshell)

I Consider the amplitude of the two loop virtual corrections to the
cross-section in which collinear and IR divergencies are regularized by
me and λ: A(2)(me , λ)

I Build an auxiliary amplitude A(2)
(me , λ) with the same IR

singularities of the A(2)(me , λ) but sufficiently simple to be evaluated
in the small mass expansion

I The quantity δA(2) = A(2) −A(2)
has a finite limit when me and λ

tend to zero

I δA(2) is regularization scheme independent and it can be
reconstructed from the known results for the virtual corrections
calculated by setting me = λ = 0 from the start

Finally A(2) = A(2)
(me , λ) + δA(2) + O(me , λ)

=⇒The method cannot be applied to the α4(NF = 1) corrections



Collinear Poles & Gauge Invariant Sets

In a physical (Coulomb or axial) gauge, the collinear divergencies
factorize and can be reabsorbed in the external field renormalization

J. Frenkel and J. C. Taylor (’76)



Collinear Poles & Gauge Invariant Sets

In a physical (Coulomb or axial) gauge, the collinear divergencies
factorize and can be reabsorbed in the external field renormalization

J. Frenkel and J. C. Taylor (’76)

In Bhabha scattering, the box (and the photon self-energy) diagrams
form gauge-independent sets



Collinear Poles & Gauge Invariant Sets

In a physical (Coulomb or axial) gauge, the collinear divergencies
factorize and can be reabsorbed in the external field renormalization

J. Frenkel and J. C. Taylor (’76)

In Bhabha scattering, the box (and the photon self-energy) diagrams
form gauge-independent sets

therefore the boxes must form a collinear safe set in any gauge



Collinear Poles & Gauge Invariant Sets

In a physical (Coulomb or axial) gauge, the collinear divergencies
factorize and can be reabsorbed in the external field renormalization

J. Frenkel and J. C. Taylor (’76)

In Bhabha scattering, the box (and the photon self-energy) diagrams
form gauge-independent sets

therefore the boxes must form a collinear safe set in any gauge

In the Feynman gauge we employ in the calculation, single box diagrams
show collinear divergencies that cancel in the sum over all the box
diagrams
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the terms proportional to me become negligible for values of E that are
very small with respect to the ones encountered in e+e− experiments



NNLO Heavy Flavor CS at
√

s = 500 GeV
√

s
=

50
0

G
eV

θ e (10−3) µ (10−3) τ (10−3) t (10−3)

1◦ 3.4957072 0.9690710 0.1542329 0.0000575

2◦ 4.1203687 1.2491270 0.3573661 0.0002466

3◦ 4.5099086 1.4146106 0.5140242 0.0005763

50◦ 7.5740980 2.3185800 1.8411736 0.1707137

60◦ 7.7965875 2.3446744 1.9274750 0.2340996

70◦ 8.0081541 2.3708714 2.0072240 0.2998535

80◦ 8.2164081 2.3981523 2.0829886 0.3635031

90◦ 8.4172449 2.4207950 2.1521199 0.4202418

100◦ 8.5982864 2.4282953 2.2085332 0.4655025

110◦ 8.7451035 2.4090920 2.2456055 0.4979010

120◦ 8.8465287 2.3536259 2.2585305 0.5181602

130◦ 8.8954702 2.2543834 2.2446158 0.5287459

Table: The second-order electron, µ, τ -lepton, and top-quark contributions to

the differential cross section of Bhabha scattering at
√

s = 500 GeV in units of

10−3 of the Born cross section. The top-quark contribution also includes O(ααs)
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