ILC performance in scenarios with light sleptons

Mikael Berggren¹

¹DESY, Hamburg

LCWS12, Arlington, TX, Oct 2012

Outline

- Outline
- 2 Introduction
- 3 LHC results and SUSY
- A New bench-mark point
- 5 Analysis
- Some results
- Conclusions

- LHC did not see SUSY, yet.
- But something higgs-ish was seen...
- ... with a mass in the MSSM prediction window.
- Given this: Is SUSY scenarios with a rich spectrum of sparticles in ILC-500 reach still possible?
- If so, how should it be studied?

This talk

- LHC did not see SUSY, yet.
- But something higgs-ish was seen...
- ... with a mass in the MSSM prediction window.
- Given this: Is SUSY scenarios with a rich spectrum of sparticles in ILC-500 reach still possible?
- If so, how should it be studied?

This talk

- LHC did not see SUSY, yet.
- But something higgs-ish was seen...
- ... with a mass in the MSSM prediction window.
- Given this: Is SUSY scenarios with a rich spectrum of sparticles in ILC-500 reach still possible?
- If so, how should it be studied?

This talk

- LHC did not see SUSY, yet.
- But something higgs-ish was seen...
- ... with a mass in the MSSM prediction window.
- Given this: Is SUSY scenarios with a rich spectrum of sparticles in ILC-500 reach still possible?
- If so, how should it be studied?

This talk

- LHC did not see SUSY, yet.
- But something higgs-ish was seen...
- ... with a mass in the MSSM prediction window.
- Given this: Is SUSY scenarios with a rich spectrum of sparticles in ILC-500 reach still possible?
- If so, how should it be studied?

This talk

- LHC did not see SUSY, yet.
- But something higgs-ish was seen...
- ... with a mass in the MSSM prediction window.
- Given this: Is SUSY scenarios with a rich spectrum of sparticles in ILC-500 reach still possible?
- If so, how should it be studied?

This talk:

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUS\ models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling

 Mass

 what matters is the top!

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector
 ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (≈ no t, b in protons!
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size bu opposite sign

 - For this to work: $M_{particle} \approx M_{sparticle}$

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- ullet Only gen. 1&2 squarks (pprox no t, b in protons!
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size bu opposite sign
 - → Divergences cancel!
 - ullet For this to work: $M_{particle}pprox M_{sparticle}$
 - Higgs coupling

 Mass

 what matters is the top!

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (≈ no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but

 - ullet For this to work: $M_{particle} pprox M_{sparticle}$
 - Higgs coupling

 Mass

 what matters is

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (≈ no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ◆ ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (≈ no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (≈ no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (≈ no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: M_{particle} ≈ M_{sparticle}

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (≈ no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: M_{particle} ≈ M_{sparticle}
 - Higgs coupling

 Mass
 ⇒ what matters is the top!

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Production needs a cluing in reach
 Production needs a cluing in reach
 Production needs a cluing in reach

SUSY under pressure ?? No, but simple models are !

- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$

m_{average} [GeV]

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s \gamma$, $b \to \mu \mu, \rho$ -parameter, $\Gamma(Z)$...

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of $\sim 100 \text{ GeV}$ would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s \gamma$, $b \to \mu \mu, \rho$ -parameter, $\Gamma(Z)$...

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter: A WIMP of ~ 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s \gamma$, $b \to \mu \mu, \rho$ -parameter, $\Gamma(Z)$...

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of $\sim 100 \text{ GeV}$ would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- ullet Other low-energy constrains : $b o s\gamma$, $b o \mu\mu,
 ho$ -parameter, $\Gamma(Z)$

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of $\sim 100 \text{ GeV}$ would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s \gamma$, $b \to \mu \mu, \rho$ -parameter, $\Gamma(Z)$...

Remember: Without LHC Sps1a' is the best fit!

(From Mastercode).

Remember: Without LHC Sps1a' is the best fit!

Can we still get all this with SUSY, without contradicting LHC limits ?!

(From Mastercode).

7 / 24

New points

Can all this be provided by SUSY ?Yes, sure!

Take old ILC favourite benchmark SPS1a, and make the TDR4 point (see Baer&List arXiv:1205.6929v1

New points

Can all this be provided by SUSY ?Yes, sure!

Take old ILC favourite benchmark SPS1a, and make the TDR4 point (see Baer&List arXiv:1205.6929v1

New points

Can all this be provided by SUSY ?Yes, sure!

Take old ILC favourite benchmark SPS1a, and make the TDR4 point (see Baer&List arXiv:1205.6929v1

New points

Can all this be provided by SUSY ?Yes, sure!

Take old ILC favourite benchmark SPS1a, and make the TDR4 point (see Baer&List arXiv:1205.6929v1

New points

Can all this be provided by SUSY ?Yes, sure!

Take old ILC favourite benchmark SPS1a, and make the TDR4 point (see Baer&List arXiv:1205.6929v1

SPS1a: mSUGRA

- 5 parameters.
- One gaugino parameter
- One scalar parameter

TDR4: Phenomenological SUSY

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints,≈ same ILC accessible spectrum ⇒ old analyses still valid!

Light sleptons

Features of TDR 4

- The $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: Small Δ_M , $\gamma\gamma$ background
- For $\tilde{\tau}_2$: $WW \rightarrow l\nu l\nu$ background \Leftrightarrow Polarisation.
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

Features of TDR 4

- The $\tilde{\tau}_1$ is the NLSP.
- For τ

 ₁: Small Δ_M, γγ background
- For $\tilde{\tau}_2$: $WW \rightarrow l\nu l\nu$ background \Leftrightarrow Polarisation.
- τ̃ NLSP → τ:s in most SUSY decays → SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

- All bosinos
- M_h OK
- $\tilde{\ell}_L \to \tilde{\chi}^0_0 \ell$ at 30-40 % BR.

- $\tilde{\chi}_4^0$ and $\tilde{\chi}_2^\pm$ too heavy
- M_h too small
- $\tilde{\ell}_L \to \tilde{\chi}_0^0 \ell$ at \sim 95 % BR.

- All bosinos
- M_b OK
- $\tilde{\ell}_L \rightarrow \tilde{\chi}_0^0 \ell$ at 30-40 % BR.

- $\tilde{\chi}_4^0$ and $\tilde{\chi}_2^\pm$ too heavy
- M_h too small
- $\tilde{\ell}_L \to \tilde{\chi}_0^0 \ell$ at \sim 95 % BR.

- All bosinos
- M_h OK
- $\tilde{\ell}_L \rightarrow \tilde{\chi}_0^0 \ell$ at 30-40 % BR.

- $\tilde{\chi}_4^0$ and $\tilde{\chi}_2^\pm$ too heavy
- M_h too small
- $\tilde{\ell}_L o \tilde{\chi}_0^0 \ell$ at \sim 95 % BR.

Even more open channels More complicated topologies

We plan to check how close TDR4 is to the "best fit" (with fittino

- All bosinos
- *M_h* OK
- $\tilde{\ell}_L \rightarrow \tilde{\chi}_0^0 \ell$ at 30-40 % BR.

- $\tilde{\chi}_4^0$ and $\tilde{\chi}_2^\pm$ too heavy
- M_h too small
- $\tilde{\ell}_L \rightarrow \tilde{\chi}_0^0 \ell$ at \sim 95 % BR.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximative model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ..

But

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximative model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ...

But...

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximative model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ...

But...

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximative model parameters?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ..

But...

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximative model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ..

But...

Analysis

Disclaimer

- Very preliminary
- Mostly taken over SPS1a' analyses: Guaranteed to have bad efficiency for heavier states, due to the increase of cascade decays (mostly ignored in Sps1a')

Take over SPS1a' (Phys.Rev.D82:055016,2010, Nicola's thesis,...)

Lighter sleptons

Use the polarisation (0.8,-0.3) of the data to reduce bosino background. Assumed to be 50 % of all data.

From decay kinematics:

- $m_{\tilde{\ell}}$ and $M_{\tilde{\chi}_1^0}$ and end-points of spectrum = $E_{\ell,min(max)}$.
- For $\tilde{\tau}_1$: other end-point hidden in $\gamma\gamma$ background:Must get $M_{\tilde{\chi}_1^0}$ from other sources. ($\tilde{\mu}$, \tilde{e} , ...)

$m_{\tilde{\ell}}$ also from cross-section:

•
$$\sigma_{\tilde{\ell}} = A(\theta_{\tilde{\ell}}, \mathcal{P}_{beam}) \times \beta^3/s$$
, so

•
$$m_{\tilde{\ell}} = E_{beam} \sqrt{1 - (\sigma s/A)^{2/3}}$$
: no $M_{\tilde{\chi}_1^0}$!

From decay spectra:

• \mathcal{P}_{τ} from exclusive decay-mode(s): handle on mixing angles $\theta_{\widetilde{\tau}}$ and $\theta_{\widetilde{\chi}_1^0}$

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

$\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts (see backup)

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} significantly less than E_{CMS} .
- M_{miss} significantly less than M_{CMS}.
- No particle with momentum close to E_{beam}.

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

$\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts (see backup)

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} significantly less than E_{CMS} .
- M_{miss} significantly less than M_{CMS}.
- No particle with momentum close to E_{beam}.

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

$\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts (see backup)

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} significantly less than E_{CMS} .
- M_{miss} significantly less than M_{CMS}.
- No particle with momentum close to E_{beam}.

- - E_{vis} < 400 GeV
 - 2 charged particles
 - < 40% of E_{vis} < below 30
- Simple observable: E_{vis}: Peak
- See the signal appearing after

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}_1^0 min LEP}).$
 - 2 charged particles
 - < 40% of E_{vis} < below 30
- Simple observable: E_{vis}: Peak
- See the signal appearing after

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}_1^0 min LEP}).$
 - 2 charged particles
 - \bullet < 40% of E_{vis} < below 30 degrees.
- Simple observable: E_{vis} : Peak
- See the signal appearing after

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}_1^0 min LEP}).$
 - 2 charged particles
 - \bullet < 40% of E_{vis} < below 30 degrees.
- Simple observable: E_{vis}: Peak and width gives $M_{\tilde{e}_{\mathbf{p}}}$ and $M_{\tilde{\chi}_{1}^{0}}$.
- See the signal appearing after

crossection in the pb-range.
• Few simple cuts.

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min,LEP}).$
 - 2 charged particles
 - \bullet < 40% of E_{vis} < below 30 degrees.
- Simple observable: E_{vis} : Peak and width gives $M_{\tilde{e}_{\mathbf{p}}}$ and $M_{\tilde{\chi}_{1}^{0}}$.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb^{−1}
 - 25 fb⁻¹

 - 250 fb⁻¹

crossection in the pb-range.
• Few simple cuts.

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min, LEP}).$
 - 2 charged particles
 - \bullet < 40% of E_{vis} < below 30 degrees.
- Simple observable: E_{vis} : Peak and width gives $M_{\tilde{e}_{\mathbf{p}}}$ and $M_{\tilde{\chi}_{1}^{0}}$.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb⁻¹

Visible Energy @ 5 fb-1

crossection in the pb-range.
• Few simple cuts.

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min, LEP}).$
 - 2 charged particles
 - \bullet < 40% of E_{vis} < below 30 degrees.
- Simple observable: E_{vis} : Peak and width gives $M_{\tilde{e}_{\mathbf{p}}}$ and $M_{\tilde{\chi}_{1}^{0}}$.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb⁻¹
 - 25 fb⁻¹

Visible Energy @ 25 fb-1

crossection in the pb-range.
• Few simple cuts.

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min,LEP}).$
 - 2 charged particles
 - \bullet < 40% of E_{vis} < below 30 degrees.
- Simple observable: E_{vis} : Peak and width gives $M_{\tilde{e}_{\mathbf{p}}}$ and $M_{\tilde{\chi}_{1}^{0}}$.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹

Visible Energy @ 100 fb-1

- - E_{vis} < 400 GeV $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min,LEP}).$
 - 2 charged particles
 - \bullet < 40% of E_{vis} < below 30 degrees.
- Simple observable: E_{vis} : Peak and width gives $M_{\tilde{e}_{\mathbf{p}}}$ and $M_{\tilde{\chi}_{1}^{0}}$.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb⁻¹

- So, within months after start-up, we can estimate $M_{\tilde{e}_R}$ and $M_{\tilde{\chi}_1^0}$ to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the $\tilde{\mu}_R$.
- \bullet ... and that it has \approx the same mass. ass the \tilde{e}_R

Nets step

- So, within months after start-up, we can estimate $M_{\tilde{e}_R}$ and $M_{\tilde{\chi}_1^0}$ to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the $\tilde{\mu}_R$.
- \bullet ... and that it has \approx the same mass. ass the \tilde{e}_R

Nets step

ẽ_R spectrum

- So, within months after start-up, we can estimate $M_{\tilde{e}_R}$ and $M_{\tilde{\chi}_1^0}$ to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the $\tilde{\mu}_R$.
- ullet ... and that it has pprox the same mass. ass the \tilde{e}_R

Nets step

- So, within months after start-up, we can estimate $M_{\tilde{e}_R}$ and $M_{\tilde{\chi}_1^0}$ to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the $\tilde{\mu}_R$.
- \bullet ... and that it has \approx the same mass. ass the \tilde{e}_R

Nets step

ẽ_R spectrum

- So, within months after start-up, we can estimate $M_{\tilde{e}_R}$ and $M_{\tilde{\chi}_1^0}$ to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the $\tilde{\mu}_R$.
- \bullet ... and that it has \approx the same mass. ass the \tilde{e}_R

Nets step:

ẽ_R spectrum

Refine cuts:

- E_{vis} < 300 GeV.
- M_{miss} > 250 GeV.
- E below 30 degrees < 10 GeV.
- $\cos \theta_{miss} < 0.95$.
- Exactly two opposite charged identified e:s.
- $(E_{iet1} + E_{iet2}) \sin \theta_{acop} > 21$, <

Refine cuts:

- E_{vis} < 300 GeV.
- M_{miss} > 250 GeV.
- E below 30 degrees < 10 GeV.
- $\cos \theta_{miss} < 0.95$.
- Exactly two opposite charged identified e:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$, < 135 GeV.

Efficiency 52 %

Refine cuts:

- $E_{vis} < 300 \text{ GeV}$.
- M_{miss} > 250 GeV.
- E below 30 degrees < 10 GeV.
- $\cos \theta_{miss} < 0.95$.
- Exactly two opposite charged identified e:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$, < 135 GeV.

Efficiency 52 %

Refine cuts:

- E_{vis} < 300 GeV.
- M_{miss} > 250 GeV.
- E below 30 degrees < 10 GeV.
- $\cos \theta_{miss} < 0.95$.
- Exactly two opposite charged identified e:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$, < 135 GeV.

Efficiency 52 %

$\tilde{\mu}_{\rm R}$ spectrum

Same cuts, but ask for two μ :s instead. ie.:

- E_{vis} < 300 GeV.
- M_{miss} > 250 GeV.
- E below 30 degrees < 10 GeV.
- $\cos \theta_{miss} < 0.95$.
- Exactly two opposite charged identified μ :s.
- $(E_{iet1} + E_{iet2}) \sin \theta_{acop} > 21$, < 135 GeV.
- Note lower cross-section.
- SUSY bck is $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$.

$\tilde{\mu}_{R}$ spectrum

Same cuts, but ask for two μ :s instead. ie.:

- E_{vis} < 300 GeV.
- M_{miss} > 250 GeV.
- E below 30 degrees < 10 GeV.
- $\cos \theta_{miss} < 0.95$.
- Exactly two opposite charged identified μ :s.
- $(E_{iet1} + E_{iet2}) \sin \theta_{acop} > 21$, < 135 GeV.
- Note lower cross-section.
- SUSY bck is $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$.

$\tilde{\mu}_{\mathrm{R}}$ spectrum

Same cuts, but ask for two μ :s instead, ie.:

- $E_{vis} < 300 \text{ GeV}$.
- M_{miss} > 250 GeV.
- E below 30 degrees < 10 GeV.
- $\cos \theta_{miss} < 0.95$.
- Exactly two opposite charged identified μ:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$, < 135 GeV.
- Note lower cross-section.
- SUSY bck is $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$.

$\tilde{\mu}_{R}$ threshold scan

From these spectra, we can estimate $M_{{\rm \widetilde e_R}}$, $M_{{\rm \widetilde \mu_R}}$ and $M_{{\rm \widetilde \chi_1^0}}$ to < 1 GeV.

$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\widetilde{\mu}_R}$ from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

Error on $M_{\widetilde{\mu}_{\mathrm{R}}}$ = 197 Mev

$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{\rm e}_{\rm R}}$, $M_{\tilde{\mu}_{\rm R}}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\widetilde{\mu}_R}$ from threshold:

- 10 points, 10 fb⁻¹/point.
- Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

Error on
$$M_{\widetilde{\mu}_{\rm R}} = 197$$
 MeV

$\tilde{\mu}_R$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\widetilde{\mu}_R}$ from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

Error on $M_{\tilde{\mu}_{\rm R}}$ = 197 MeV

- $E_{vis} < 300 \text{ GeV}$.
- M_{miss} > 250 GeV.
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- $E_{vis} < 300 \text{ GeV}$.
- M_{miss} > 250 GeV.
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$

- $E_{vis} < 300 \text{ GeV}$.
- M_{miss} > 250 GeV.
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- $E_{vis} < 300 \text{ GeV}$.
- $M_{miss} > 250$ GeV.
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Only the upper end-point is relevant.
- Background subtraction:
 - Important SUSY
 background,but region
 above 45 GeV is signal free
 Fit exponential and
 extrapolate.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background fit).

 Only the upper end-point is relevant.

Results for $\tilde{\tau}_1$

$$M_{\widetilde{\tau}_1}=107.73^{+0.03}_{-0.05} {\rm GeV}/c^2\otimes 1.3\Delta(M_{\widetilde{\chi}_1^0})$$
 The error from $M_{\widetilde{\chi}_1^0}$ largely dominates

Fit exponential and extrapolate.

 Fit line to (data-background fit).

 Only the upper end-point is relevant.

Results for $\tilde{\tau}_1$

$$M_{\widetilde{\tau}_1}=107.73^{+0.03}_{-0.05} {\rm GeV}/c^2\otimes 1.3\Delta(M_{\widetilde{\chi}_1^0})$$
 The error from $M_{\widetilde{\chi}_1^0}$ largely dominates

First look at Heavier sleptons ($\tilde{\mu}_{L}$)

Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for $\tilde{\mu}_R$, and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2.

- $S/\sqrt{B}=5.0$ for LR,
- $S/\sqrt{B}=2.8$ for RL

First look at Heavier sleptons ($\tilde{\mu}_{\rm L}$)

Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for $\tilde{\mu}_R$, and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2. • $S/\sqrt{B} = 5.0$ for LR, • $S/\sqrt{B} = 2.8$ for RL.

First look at Heavier sleptons ($\tilde{\mu}_{L}$)

Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for $\tilde{\mu}_R$, and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2.

• $S/\sqrt{B} = 5.0$ for LR,

First look at Heavier sleptons ($\tilde{\mu}_{L}$)

Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for $\tilde{\mu}_R$, and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2. • $S/\sqrt{B} = 5.0$ for LR,

First look at Heavier sleptons ($\tilde{\mu}_{\rm I}$)

Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for $\tilde{\mu}_R$, and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: p(other μ) > 120 GeV.

First look at Heavier sleptons ($\tilde{\mu}_{L}$)

Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for $\tilde{\mu}_R$, and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2.

- S/\sqrt{B} =5.0 for LR,
- S/\sqrt{B} =2.8 for RL.

First look at Heavier sleptons ($\tilde{\mu}_{\rm L}$)

Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for $\tilde{\mu}_R$, and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2.

- S/\sqrt{B} =5.0 for LR,
- S/\sqrt{B} =2.8 for RL.

- Rich SUSY spectra at an 500 GeV ILC is by no means excluded.
- Such scenarios would be likely to be the best fit to all data fittino analysis in the pipe.
- The way of sharing beam-time was discussed (without any recomendation, yet)
- A very preliminary analysis of some aspects of such a scenario -TDR4 - was presented.

- Rich SUSY spectra at an 500 GeV ILC is by no means excluded.
- Such scenarios would be likely to be the best fit to all data fittino analysis in the pipe.
- The way of sharing beam-time was discussed (without any recomendation, yet)
- A very preliminary analysis of some aspects of such a scenario -TDR4 - was presented.

- Rich SUSY spectra at an 500 GeV ILC is by no means excluded.
- Such scenarios would be likely to be the best fit to all data fittino analysis in the pipe.
- The way of sharing beam-time was discussed (without any recomendation, yet)
- A very preliminary analysis of some aspects of such a scenario -TDR4 - was presented.

Work in progress. Stay tuned.

- Rich SUSY spectra at an 500 GeV ILC is by no means excluded.
- Such scenarios would be likely to be the best fit to all data fittino analysis in the pipe.
- The way of sharing beam-time was discussed (without any recomendation, yet)
- A very preliminary analysis of some aspects of such a scenario -TDR4 - was presented.

Work in progress. Stay tuned.

Thank You!

Backup

BACKUP SLIDES

BACKUP

Note that this wasnt counted!