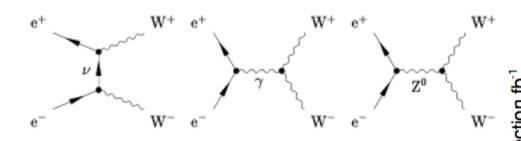
Measurement of the beam polarization using the semileptonic W+W- process


Aura Rosca
DESY

LCWS12, Arlington, 22 - 26 of October 2012

Introduction

- Beam polarization can be measured with polarimeters to a precision of 2.5 · 10⁻³.
 - however, not the luminosity-weighted polarization
- Large luminosity at the ILC allows an accurate measurement of the luminosity-weighted polarization from the data, for example using the process e⁺e⁻ → W⁺W⁻.
 - also, calibration of the absolute polarization scale

W-pair Production and Decay

• Mixture of υ t-channel and Z, γ s-channel exchange.

High cross section σ = 7 – 3 pb at E_{CM} = 500 GeV - 1 TeV, highly dependent on polarization.

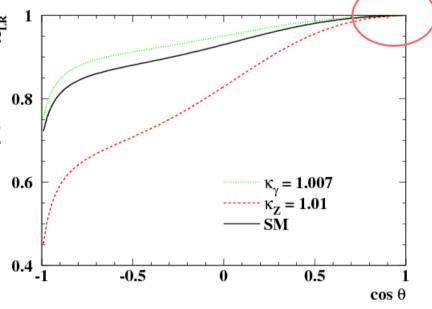
Decay modes:

6	Polarization -50	o 0 e+ polari	50 zation
nels	process	BR	
	$W^+W^- \rightarrow qqqq$	45.6%	
	$W^+W^- \rightarrow qq\ell v$	43.8%	

 $W^+W^- \rightarrow \ell \nu \ell \nu$

6

8000 7000 6000


4000 3000 2000

1000

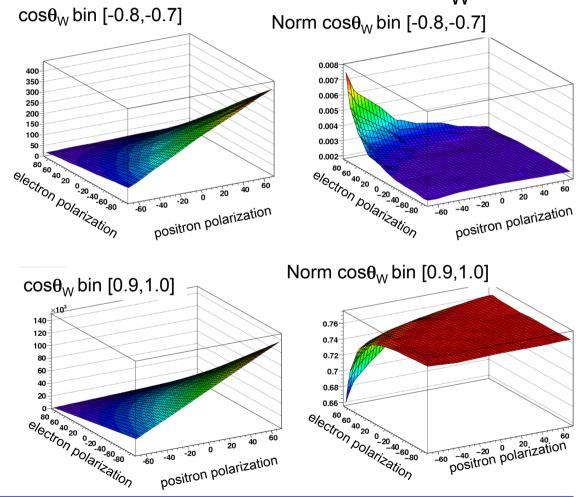
10.6%

Polarization Measurement with W-pairs

- Total cross section and differential cross section $d\sigma/d\theta_W$ strongly sensitive to the polarization:
 - use the Blondel technique
 - fit the W production angle
- Forward peak dominated by v exchange and independent of anomalous couplings:
 - fit simultaneously the polarisation and anomalous couplings

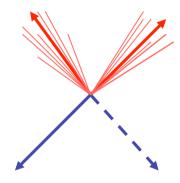
Blondel Scheme with Ws

- Four independent measurements: σ_{RR} , σ_{LL} , σ_{RL} , σ_{LR} .
- Can measure P_{e^+} and P_{e^-} , if $|P^R| = |P^L|$ for each beam:


$$P_{e^{\pm}} = \sqrt{\frac{(\sigma_{RL} + \sigma_{LR} - \sigma_{RR} - \sigma_{LL})(\mp \sigma_{RL} \pm \sigma_{LR} - \sigma_{RR} + \sigma_{LL})}{(\sigma_{RL} + \sigma_{LR} + \sigma_{LR} + \sigma_{LL})(\mp \sigma_{RL} \pm \sigma_{LR} + \sigma_{RR} - \sigma_{LL})}}$$

• Polarisation asymmetry $|\mathcal{P}_{e^{\pm}}^{R}|$ - $|\mathcal{P}_{e^{\pm}}^{L}|$ needs to be measured by polarimeters.

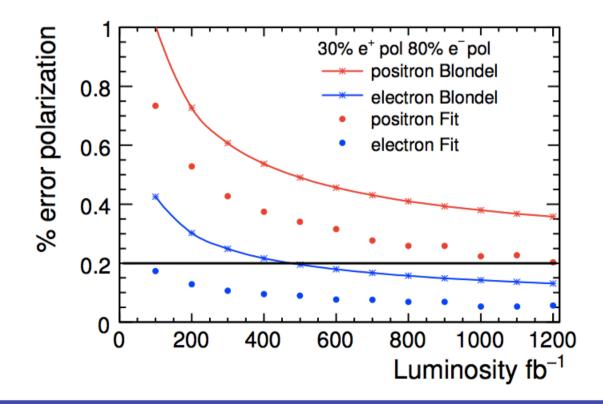
Fit of the W Production Angle


Look at the polarization dependence in bins of $\cos \theta_{W}$:

Obtain templates of $d\sigma(\cos\theta, P_{e^-}, P_{e^+})$ and fit data extracted from the templates for given P_{e^-}, P_{e^+} , in bins of $\cos\theta$.

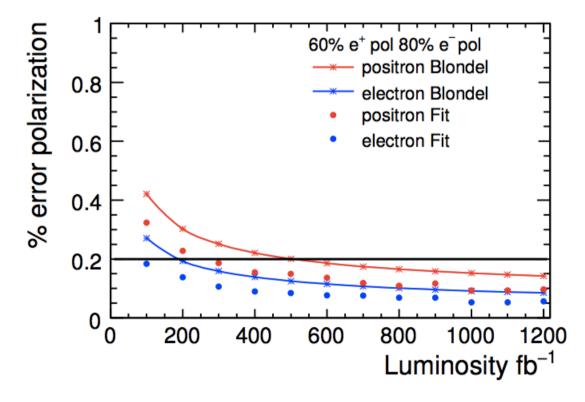
Selection of Semi-leptonic Final State

Topology



- 2 jets
- 1 charged lepton
- 1 neutrino
- Straightforward reconstruction
- Low background

- Selection at 500 GeV
 - Cut based selection
 - Durham algorithm to force the event in three jets
 - Isolation cuts for the lepton
 - Cut on the reconstructed W mass
 - Cut on the W production angle
- Performance at 500 GeV:
 - Efficiency: 67%
 - Backgrounds: ~13%


Selected Results at $E_{CM} = 500 \text{ GeV}$

- Precision achievable on polarization measurement:
 - Lower statistical precision for positrons.

Selected Results at $E_{CM} = 500 \text{ GeV}$

• For the 60% e+ polarization it gets better for the positron, while unaltered for the electron. A 0.2% error on the positron polarization can be reached with 300fb-1.

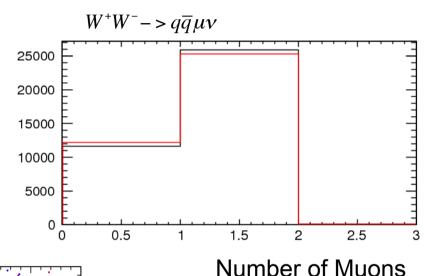
Status at 1 TeV

- At E_{CM} = 1 TeV, there are fewer signal events and lower positron polarization:
 - higher statistical error.
- Also, events are more forward and machine backgrounds increase at higher energies:
 - expect higher systematics.
- Need to improve on the analysis at 500 GeV, mainly:
 - Lepton ID
 - Use of kinematic fit: 2C
 - Inclusion of the $\gamma\gamma$ -> hadrons background. Use different jet algorithms to reduce the influence of this background.

Lepton Identification

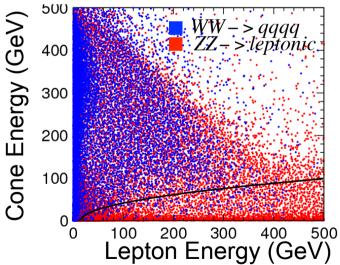
Lepton ID

For e+/e-: $(En_{ECAL}+En_{HCAL})/P > 0.8$


 $En_{ECAL}/(En_{ECAL}+En_{HCAL})>0.9$

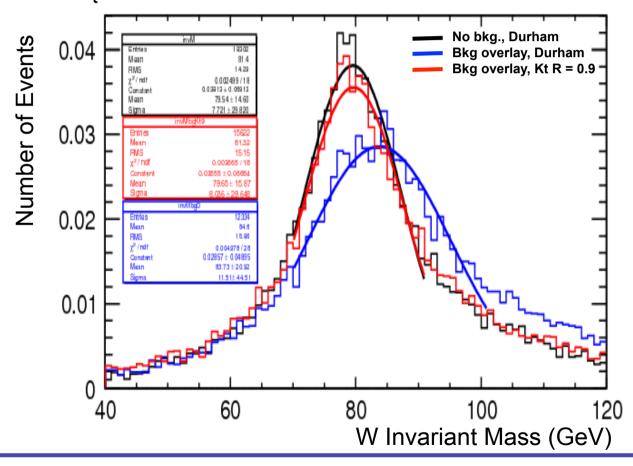
Charge not-zero

For μ +/ μ -: (En_{ECAL}+En_{HCAL})/P < 0.4


 $En_{ECAL}/(En_{ECAL}+En_{HCAL})<0.5$

Charge not-zero

Isolation


$$E_{cone} < \sqrt{20E_{\ell} - 300}$$

Efficiency: 93%

Effect of γγ-> hadrons Background

 Can be dealt with by using an appropriate jet clustering algorithm: K_t instead of Durham.

Summary

- Beam polarization can be measured from the data with high precision using the WW process at 500 GeV.
- Higher positron polarization is beneficial for the polarization measurement.
 - With 60% positron polarization an error ≈ 0.2% on both polarizations is achievable with ≈ 300 fb⁻¹at 500 GeV.
- Several methods can be used: Blondel scheme, fit of W production angle.
- An assessment of the precision at 1 TeV is ongoing.