

Update MDI study of TPC Technology @ Tera-Z on CEPC

Huirong Qi Institute of High Energy Physics, CAS

April 13, 2023,

Content

- MDI of e+e- colliders
- MDI study of CEPC

e⁺e⁻ colliders: Sources of Detector Backgrounds

- Beam-beam interactions (disrupted primary beam, beamstrahlung photons, e+e- and mu+mu- pairs and hadrons from beamstrahlung and gg interactions, and extraction line losses) and radiative Bhabhas
 - $e^+e^- \rightarrow e^+e^- \gamma$ electron-positron scattering
- From the standpoint of integrated background, e+e- circular collider is relatively 'very clean' machines. Average integrated hadronic fluxes produced at the IP are about several orders of magnitude lower compared to LHC. However, the Tera-Z are not so drastically different.

e⁺e⁻ colliders: Sources of Detector Backgrounds

- In general, this source is well understood and under control: it scales with luminosity, one should transport interaction products away from IP and shield/mask sensitive detectors, and exploit detector timing
 - Fox example: Make limiting apertures (collimators or shield) as far from IP as possible. Suppress muon flux far from IP by thick magnetic walls.

3.0T for Higgs
High luminosity (10³⁶)
2.0T for Z
Beam crossing angle of 33mrad

Huirong Qi

MDI of CEPC (priliminary)

- MDI stands for "Machine Detector Interface"
 - Interaction Region and other components
 - 2 IPs
 - 33mrad Crossing angle

Huirong Qi

Ions produced by machine-related backgrounds

- Simulated these e+ e- pairs in some detector models
 - TPC only in 2T using ILD size (Daniel Jeans/KEK)
 - TPC only in 2T using FCCee size (Andrea Ciarma/CERN)
 - TPC only in 2T using CEPC size (Haoyu's talk)
- Pass 100 bunch-crossings of bremsstrahlung pairs through G4-based full detector simulation
 - "uniform" 2T B-field and no anti-DID

Huirong Oi

6

What about ions produced by machine-related backgrounds

- Distortions in r-phi due to ions from hadronic Z decays can be up to O(100) μm, but are stable to O(1) μm
- BUT, bremsstrahlung gives ~200X more TPC primary ions than hadronic Z decays (preliminary)
- Anyway, forward region plays a very important role room for optimization
 - Some discussion and feedback to Haoyu and Manqi before this meeting

	primary ions / "event"	event rate	primary ions / 0.44 s "TPC frame*"
Z_had ILD_l5_v02 @ 2T	1.27M	54 kHz	30 x10 ⁹
pairs ILD_l5_v02 @ 2T	75 k	33 MHz	1100 x10 ⁹
pairs ILD TPC only @ 2T	15 k	33 MHz	220 x10 ⁹
pairs FCCee w/ TPC	0.43 M	33 MHz	6200 x10 ⁹

* maximum ion drift time in TPC = 0.44s

Pair Production/Other Photons from CEPC

- Pair Production(Beamstrahlung) may lead to two different impacts:
 - The impacts on detector, caused by the electrons/positrons produced by photons
 - The impacts on accelerator components outside of the IR, caused by the photons directly.
- The huge deposited power due to the photons(mainly from BS, plus others) might be harmful to the machine, found by FCC. Photon Dump?
 - At higgs mode, roughly 93.1 kW@30MW(150kW@50MW)
 - At Z mode, <E>~2.2MeV, ~450kW@30MW(720kW@50MW) in ~11m(22-33m in the first bending magnet).
 - The photons are very hard, contains multi-MeV or even few-GeV photons.

Loss Rate/Loss Power from CEPC

- Errors implemented
 - High order error for magnets
 - · Beam-beam effect

 $Loss \ Rate = \frac{Loss \ Number}{Loss \ Time} = \frac{Bunch \ number * Particles \ per \ Bunch * (1 - e^{-1})}{Beam \ Lifetime}$

- 2 IR considered(sum)
- Loss Rate is in the level of MHz/10cm; Loss Power is in the level of mW/10cm
- Current Collimators could not mitigate BGC effectively. We need more.

@Higgs

@Higgs +ttbar +Z

Detector Simulation from CEPC

- The full detector simulation has been performed.
 - Baseline detector using Mokka/Marlin is updating.
 - 4th detector concept using CEPCSW is performing.
- The impacts on noise caused by beam backgrounds on detector performance need to be noticed.
 - ~50x of physics signal rates @ TPC z-pole ____>

From the Beam-Gas scattering

· for the Higgs mode

Fluence is flat along the Z axis

- · Secondary scattering particles
- Backscattering

Wei Xu

Open question: to be addressed by R&D

- High Luminosity operation (2×10^{36}) @ Z with 2 T B-Field
- Shield and mask should be optimized in MDI region (only for TPCs)
 - Bremsstrahlung gives 200X or 50X TPC primary ions than hadronic Z decays?
 - Use pattern recognition algorithm for identification and rejection?
 - Background rejection efficiency?

•

Many thanks!