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Introduction to Higgs physics at future e+e- 
— focused on single Higgs

for comprehensive review, arXiv:1903.01629; 2203.07622
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Interplay between Higgs/EW/Top 
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opportunities from precision Higgs couplings

measuring deviation pattern of Higgs couplings will reveal 
the nature of BSM physics

β

arXiv: 1306.6352

— another way towards discovery



measurement needs to be as model-independent as possible: 
so that the true BSM model can be discriminated from others, 
future HEP direction hence can be decided

4

general guidelines for Higgs coupling meas. @ future e+e-

new particles are heavy, deviation is small, 1-10% for mBSM~1TeV:  
need measurement with 1% precision or below so that deviations 
with SM can be discovered

—in light of what have been found at LHC



proposals of future e+e- colliders

√s beam 
polarisation

∫Ldt 
(baseline) R&D phase

ILC 0.1 - 1 TeV e-: 80%

e+: 30% (20%)

2 ab-1 @ 250 GeV

   0.2 ab-1 @ 350 GeV

 4 ab-1 @ 500 GeV


 8 ab-1 @ 1 TeV
TDR 2013

CLIC 0.35 - 3 TeV e-: (80%)

e+: 0%

 1 ab-1 @ 380 GeV

2.5 ab-1 @ 1.5 TeV


5 ab-1 @ 3 TeV
CDR 2012

CEPC 90 - 240 GeV e-: 0%

e+: 0%

20 ab-1 @ 240 GeV

100 ab-1 @ MZ

6 ab-1 @ 2MW

TDR 2022

FCC-ee 90 - 350 GeV e-: 0%

e+: 0%

150 ab-1 @ MZ

10 ab-1 @ 2MW


5 ab-1 @ 240 GeV

1.7 ab-1 @ 365 GeV

CDR 2018

common: Higgs factory with O(106) Higgs events

5
differ in energy reach, luminosity, polarization, project readiness
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statistics vs S/B: example on H→bb discovery

LHC (super Higgs factory #108) e+e- (Higgs factory #106)

# of Higgs produced: ~4,000,000
significance: 5.4σ

[ATLAS, 1808.08238; CMS, 1808.08242]

p
s = 250GeV

Z
Ldt = 250fb�1

~400

5.2σ
[Ogawa, PhD Thesis (Sokendai)]

full detector simulation

https://inspirehep.net/literature/1796253
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“that is much much easier, infinitely easier,  
on a e+e- machine than on a proton machine”

youtube: Burton Richter #mylinearcollider, 2015

(precision meas.)



(ii) Higgs productions at e+e-
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two apparent important thresholds: √s ~ 250 GeV for ZH,  
~500-600 GeV for ZHH and ttΗ
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(unpolarized case)

+ another threshold for t t-bar, important for Higgs physics as well



direct experimental observables: some are unique @ e+e-
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σZH

σZH×Br(H—>bb), σννH×Br(H—>bb)
σZH×Br(H—>cc), σννH×Br(H—>cc)
σZH×Br(H—>gg), σννH×Br(H—>gg)
σZH×Br(H—>WW*), σννH×Br(H—>WW*)
σZH×Br(H—>ZZ*), σννH×Br(H—>ZZ*)
σZH×Br(H—>ττ), σννH×Br(H—>ττ)
σZH×Br(H—>γγ), σννH×Br(H—>γγ)
σZH×Br(H—>μμ), σννH×Br(H—>μμ)
σZH×Br(H—>Invisible/Exotic)
σttH×Br(H—>bb)
σZHH×Br2(H—>bb), σννHH×Br2(H—>bb)

note the important synergy with LHC: H->γγ/γΖ/μμ



Z

H

μ+

μ−

e+
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Z X

M2
X =

�
pCM � (pµ+ + pµ�)

�2

well defined initial states at e+e-

recoil mass technique —> tag Z only

Higgs is tagged without looking into H decay

absolute cross section of e+e- —> ZH

(ii-1) inclusive σZH: the key for model independence 

for Z->ll, Yan et al, arXiv:1604.07524;  

for Z->qq, Thomson, arXiv:1509.02853

10
same technique can be used to search for H—>invisible / exotic decays



independent of H decay modes?
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this question is almost equivalent to whether we can 
tag the Z decay products unambiguously

might be easy in Z->ll, certainly not trivial in Z->qq

even in Z->ll mode, we know there can be isolated 
leptons from Higgs decay, e.g. H->WW*/τ τ/ZZ, 
which get mis-identified as leptons from Z decay

e+ + e� � ZH � l+l�/qq̄ + X

keep in mind we are targeting 0.1-1% precision measurement



independent of HZZ vertex?
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hence, this question is equivalent to whether 
the selections cuts are democratic for all 
production angles of Z

different HZZ vertex might change angular 
distributions of Z

Z

H

μ+

μ−

e+

e−

Z X

open question, this is not sufficiently studied yet
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(ii-2) WW-fusion channel & Higgs total width ΓH

—>Br(H->ZZ*) very small

—> better option!
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/ g

2
HZZ

Br(H ! ZZ⇤)

�H =
�HWW

Br(H ! WW ⇤)
/ g

2
HWW

Br(H ! WW ⇤)

[Duerig, et al., arXiv:1403.7734]
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Missing Mass [GeV]
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very different at √s=250 GeV

@250 GeV
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ρ = -34% correlation between 
σννHxBR(H—>bb) and σZHxBR(H—>bb)

ν

ν−

W

W
H

e+

e−

! bb̄



H-> bbH
t
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(ii-3) Top-Yukawa coupling

largest Yukawa coupling; crucial role 
non-relativistic tt-bar bound state 
correction: enhancement by ~2 at 500 GeV 
Higgs CP measurement

Yonamine, et al., PRD84, 014033; 

Price, et al., Eur. Phys. J. C75 (2015) 309

�gttH/gttH 500 GeV + 1 TeV

ILC 6.3% 1.5%

15



(iii-1) Higgs CP in H->τ+τ-

16

LHff = �mf

v
Hf̄(cos�CP + i�5 sin�CP )f

Jeans et al, arXiv:1804.01241

��CP � 4.3�

CP is essential to understand structures of all Higgs couplings

(theoretically ~1 degree reachable)
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e+ + e� � Zh � ff̄h @
�

s = 250GeV

e+ + e� � Zh � ff̄h @
�

s = 250GeV

(iii-2) Higgs CP in HZZ coupling

LhZZ = M2
Z(

1

v
+

a

�
)hZµZµ +

b

2�
hZµ�Zµ� +

b̃

2�
hZµ�Z̃µ�

(CP-odd)

Ogawa et al, arXiv:1712.09772

�b̃ � 0.016 (for Λ=1TeV)

(CP-even)
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(iv) Global interpretation: why do we need it?

suppose we discover a deviation in, e.g. cross section of 
e+e- →ZH → (μμ) (bb)

Z

Z
He+

e−

b

b̄

μ−

μ+

• hbb coupling? 
• hZZ coupling? 
• Zμμ coupling? 
• Zee coupling? 
• new diagrams?

then we would like to know which coupling is deviated:
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Higgs self-coupling determination in HH processes
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Signal  diagram

• classic studies always assume all the coupling 
except λhhh in these processes are fixed 

• might be OK for many of the couplings, but 
definitely not obvious for ZZHH / WWHH couplings
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more general interactions in HH processes

• what we are measuring if only σZHH is determined?



McCullough, arXiv:1312.3322
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• δσ could receive contributions from many other sources

—> δh ~ 500% at 250GeV only;  Gu, et al, arXiv:1711.03978

• open: what if we include other NLO effects as well?

—> δh ~ 50% + 350/500GeV; Jung, Peskin, JT, paper in preparation

λhhh determination in single-Higgs process
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From observables to couplings — Global Fit

�2 =
n�

i=1

(
Yi � Y �

i

�Yi
)2

n: number of independent observables

Yi: measured values by experiments
Yi’: predicted values by underlying theory

ΔYi: measurement uncertainty

kappa formalism

SM Effective Field Theory formalism

(Ai = Z,W, t)

(Bi = b, c, ⌧, µ, g, �, Z,W : decay)
Y 0
i
= Fi ·

g2
HAiAi

· g2
HBiBi

�0

gHXX = �X ·gSM
HXX



23

1) recoil mass technique —> inclusive σZh 

2) σZh —> κΖ —> Γ(h→ZZ*) 

3) W-fusion νeνeh —> κW —> Γ(h→WW*) 

4) total width Γh = Γ(h→ZZ*)/BR(h→ZZ*) 

5) or Γh = Γ(h→WW*)/BR(h→WW*) 

6) then all other couplings BR(h→XX) *Γh —> κX

PoS EPS-HEP2013 (2013) 316 Nucl.Part.Phys.Proc. 273-275 (2016) 826-833

Higgs coupling determination — kappa formalism

JT, et al,

https://arxiv.org/abs/arXiv:1311.6528
http://inspirehep.net/record/1467957
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BSM territory: can deviations be represented by single κZ?
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Z ?

one question in kappa formalism:
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�L = (1 + �Z)
m2

Z

v
hZµZµ + �Z

h

2v
Zµ�Zµ�

the answer is model dependent

Z

Z
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e−

�= Z

Z
H

e +

e −

Z

Z
H

e +

e − H Z

Z*

• BSM can induce new Lorentz structures in hZZ
• need a better, more theoretical sound framework
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Le� = LSM + �L

= LSM +
�

i

ci

�di�4
Oi

• most general BSM effects represented by di>4 operators 
 more model-independent formalism 

• well-defined quantum field theory respecting SM 
SU(3)xSU(2)xU(1) gauge symmetries 

 can include radiative corrections consistently 

• unifying BSM effects in Higgs, W/Z, top, 2-fermion physics 
 global view in searching for BSM

new strategy: SM Effective Field Theory
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global SMEFT fit @ e+e-

• 10 operators modifying couplings for h/Z/W/γ

next: highlight a few important implications

Φ: higgs field 
W, B: SU(2), U(1) gauge 
L, e: left/right electron

• in total, 23 parameters (see backup slides)

“Warsaw” basis, 
Grzadkowski et al, 
arXiv:1008.4884

(Barklow, Fujii, Jung, Peskin, JT, arXiv:1708.09079)
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SM-like hVV

anomalous hVV

custodial symmetry is broken by 
cT -> constrained by EWPOs

ci ~ O(10-4-10-3)

• hWW/hZZ ratio can be determined to <0.1%

(iv-1) Higgs couplings are related to themselves (hWW/hZZ)

• very important for physics case of any 250 GeV e+e- 
• hWW can be determined as precisely as hZZ at 250 GeV; 

hence precision total width & other couplings
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(iv-1) Higgs couplings are related to themselves (synergy w/ LHC)

• loop induced h->γγ/γΖ depend strongly on cWW/cWB/cBB

two measurements from LHC (model independent)

+ …

+ …

+ …

• h → γγ/γZ at LHC can help higgs couplings at e+e-

Rγγ =
BR(h → γγ)

BR(h → ZZ*)
RγZ =

BR(h → γZ)
BR(h → ZZ*)

528

290
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e+e- →Zhh e+e- →Zh Z-pole

• Higgs coupling encoded in EWPOs at Z-pole: ALR, Γl 

• Z coupling helped by Higgs meas. at high √s: δσ ~ s/m2Z

(iii-2) Higgs couplings are related to W-/Z- couplings (EWPOs)

+(c′ HL, cHE)
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Z
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Z

new ideas: improving EWPOs @ ILC250

a free gift by ISR: Higgs factory is meantime a Z factory

~108 Z events by ILC250, without any change of accelerator

more over, polarized beams

ILC250 = ILC250 + 100xLEP/SLC

radiative return

see more in

arXiv:1908.11299

• expect a factor of 10 improvement on ALR

[Mizuno, PhD thesis]
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(iv-2) Higgs couplings are related to W-/Z- couplings (TGCs)

• higgs coupling helped by meas. of TGCs in e+e- → WW

• longitudinal modes of W/Z are from Higgs fields

Z
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W-
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W+ W-

ν
Z

W+

W+
W-

W-

A

W+ W-

ν
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ν
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e+e- → WW

h → ZZ�L = (1 + �Z)
m2

Z

v
hZµZµ + �Z

h

2v
Zµ�Zµ�
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P(e-,e+)

(-1,+1)

(+1,-1)

g
cos θw

(
1
2

− sin2 θw)

g
cos θw

(−sin2 θw)

g sin θw

g sin θw

g
cos θw

(cHL + c′ HL)

g
cos θw

(cHE)

• large cancellation in (+1,-1) -> weaker dependence on cWW

• ALR in σZH -> improve cWW, cHL+cHL’ and cHE

ζZ ζAZ

• sensitive to different couplings -> lift degeneracy

(iv-3) role of beam polarizations (e+e- -> Zh)
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(iv-3) role of beam polarizations (e+e- -> Zh)

δσL = − cH + 7.7(8cWW) + . . .

δσR = − cH + 0.6(8cWW) + . . .√s=250 GeV

δσ0 = − cH + 4.6(8cWW) + . . .

(8cWW) ~ 0.16% from other meas.

  0.6

e−
R

  Bμ
contribution from

almost cancels out

why?

up to a difference in Z/γ propagator suppressed by 
m2

Z

s
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(iv-3) role of beam polarizations (overall effects)

• 250 GeV e+e-: power of 2 ab-1 polarized ≈ 5 ab-1 unpolarized

ILC250: 2 ab-1 FCCee240: 5 ab-1

(arXiv:1903.01629)

https://arxiv.org/abs/1903.01629
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(iv-4) what happens at next leading order for SMEFT

• at e+e-, NLO ~ O(α), 1% level
• for NLO from W/Z/γ/H, operators constrained to ~<0.01, 

overall effect will be < 0.1%

• for NLO from top, operators would be much less 
constrained, currently ~ O(1) -> overall effect 1% -> 
potential impact in global fit on Higgs coupling precision

Zhang, et al, 
arXiv:1804.09766, 

1807.02121
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some detailed understandings

δΓ(h → γγ) : + = − 0.56ctH + 1.2c(3)
HQ − 0.04cHtb + 33ctW + 61ctB

HL-LHC~600%

H �

�

ctB

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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Z

e�

e+

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

some detailed understandings

δAl : + = 0.05c(1)
HQ − 0.2c(3)

HQ + 0.1cHt + 1.8ctW − 0.3ctB

~1%ALR: left-right asymmetry 
 in Z-e-e coupling
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impact from top-EW operators: √s = 250 GeV e+e-

• with the same set of observables (as previous global fit), at 
250 GeV running only, the global fit will not converge at any of 
the Higgs factories  

• e.g. Higgs couplings could not be determined unambiguously 
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impact from top-EW operators: ILC250 + LHC

• LHC will provide us valuable top data sets 

• top operators will be constrained to some extent at (HL-)LHC

[Durieux, et al, arXiv:1907.10619]
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• with the help of LHC top data, Higgs coupling precisions @ 
ILC250 are almost restored 

• note: top data from LHC Run 2 is not constraining enough

impact from top-EW operators: ILC250 + LHC

S.Jung, J.Lee, M.Perello, JT, M.Vos, arXiv:2006.14631

https://arxiv.org/abs/2006.14631
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summary

• Higgs provides a unique window 
into BSM physics

• Many couplings can be measured to 
1% or below using single-Higgs

• Differential cross section can be also 
measured precisely, important for 
CP, to be explored for self-coupling

• Room for new ideas & improvement

Higgs

Top EW

BSM

???

• Higgs is not alone in probing BSM, tightly connected with other 
EW and top-quark measurement & direct searches:                
global interpretation important



backup
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(ii-3) Higgs self-coupling

direct probe of the Higgs potential
large deviation (> 20%) motivated by 
electroweak baryogenesis, could be ~100%
√s>=500 GeV, e+e- —> ZHH
√s>=1 TeV, e+e- —> ννHH (WW-fusion)
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��HHH/�HHH 500 GeV + 1 TeV

H20 27% 10%

1.5 TeV +3 TeV

36% 10%

ILC

CLIC

V (�H) =
1

2
m2

H�2H + ⇥v�3H +
1

4
⇥�4H
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physics issues: diagrams for double Higgs production
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Signal  diagram

� = S�2 + I�+B

the sensitivity of λ is determined not just by the apparent 
total cross section, in fact is determined by S and I term; 
if B term dominates, measurement would be very difficult

(signal diagram) (interference) (background diagram)



double Higgs x-section: breakdown for each diagram
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very useful to understand the impact of ECM (more in backup)
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expected precision of λ: impact from analysis & √s

 [GeV]s
500 1000 1500 2000 2500 3000

 [%
]

λ
 / λδ

10

210

ZHH (100% Eff., no Bkg.)→-+e+e

ZHH (full simulation)→-+e+e

ZHH

huge gap of these two expectations —> room of improvement
for ZHH: optimal at 500-600 GeV; significantly worse at higher √s

Di Micco et al, arXiv:1910.00012
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real jet-clustering

ZHH->ννbbbb   (BG: ZZH and ZZZ)

perfect jet-clustering

scatter plot of two Higgs masses

✦ the mis-clustering of particles degrades significantly the 
separation between signal and BG. 

✦ it is studied that using perfect color-singlet-jet-clustering 
can improve δλ/λ by 40%!

one limiting factor: jet-clustering algorithm
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the new particle searches at LHC Run 2 suggest Λ>500 GeV

simplify the analysis up to dimension-6 operators

there are 84 of such operators for 1 fermion generation

assuming B / L conservation & CP even, there are 59

• there exists a smaller but complete set relevant to 
Higgs coupling determination at e+e-

SM Effective Field Theory: some simplifications

Le� = LSM + �L

= LSM +
�

i

ci

�di�4
Oi
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+ 4 SM parameters: g, g’, v, λ
10 operators (h,W,Z,γ): cH, cT, c6, cWW, cWB, cBB, c3W, cHL, c’HL, cHE

+ 5 operators modifying h couplings to b, c, τ, μ, g

+ 2 parameters for h->invisible and exotic
+ 2 operators for contact interactions with quarks

SM Effective Field Theory: full formalism (23 pars.)
(“Warsaw” basis by Grzadkowski et al)
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expected improvement on TGCs at ILC250

TGC Limits @ 68% CL
0.05− 0 0.05 0.1

γλ∆

γκ∆

1
Z

g∆

LEP2 ATLAS CMS HL-LHC ILC 250

TGC Limits @ 68% CL
0.05− 0 0.05

γλ∆

γκ∆

1
Z

g∆

LEP2 ILC 250

1-par sensitivity 3-par sensitivity

statistically x2000 more WW events w.r.t. LEP2

arXiv:1908.11299
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(iii-3) Higgs couplings are related to themselves

• hZZ/hWW/hγZ/hγγ highly related: SU(2)xU(1) gauge symmetries

(SM structure: kappa like) (Anomalous: new Lorentz structure)
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(iv-1) absolute Higgs couplings (unique role of inclusive σZh)

renormalize kinetic term 
of SM Higgs field 

h (1-cH/2)h

shift all SM Higgs couplings by -cH/2

cH

2
�µh�µh

• cH can not be determined by any BR or ratio of couplings

• cH has to rely on inclusive cross section of e+e- → Zh, 
enabled by recoil mass technique at e+e-
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#qualitative:

precisions at Higgs factories: complementarity with LHC

model independence, 
hcc coupling

#quantitative (<~1%):
hZZ, hWW, hbb, hττ 
h->invisible/exotic

#synergy:
hγγ, hγΖ, hμμ, htt, λ

(arXiv:1903.01629)

https://arxiv.org/abs/1903.01629
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precision at Higgs factories: European Strategy Update

(Physics Briefing Book, arXiv:1910.11775)



56

top-quark operators (added to previous SMEFT fit)
(no 4-fermion operators considered)
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results (IV): ILC250+LHC+ILC500
• precisions of both Higgs couplings and operators restored
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results (V): potential impact from finite one-loop effects

• could be significant @ 250 GeV, in particular for hZZ / hWW, 
x2-3 worse, though ~1-2% precision 

• almost no difference once direct e+e- -> tt data is available
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effect of top operators: example

V V
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ctW
v2

(Q̄�µ⌫t)⌧a�̃W a
µ⌫

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ctW
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

higgs operator top operator

log-dependence
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more detailed power-counting rule

key: include leading contributions from top-quark operators
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our approach to include NLO top effects

• we didn’t try to include full NLO effects for all observables

• mainly include effects that have log-dependence on Q-scale

• captured by Renormalization Group Evolution (mixing)

·ci ≡ 16π2 dci

d ln μ
= γijcj

ci: Higgs operators; cj: Top operators; γij: anomalous dimensions

• convenient to include such top-quark effects in all Higgs/EWPO/
WW observables that have been considered previously

S.Jung, J.Lee, M.Perello, JT, M.Vos, arXiv:2006.14631

[Alonso, Jekins, 
Manohar, Trott, 2013]

https://arxiv.org/abs/2006.14631
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(statistical error) (systematic error)

(arXiv:1708.09079)

λhhh model-independent determination in SMEFT (c6)

• interesting to prove this in e+e- → ννHH as well: still open 
• another crucial question: can we do the same analysis to HH processes 

at hadron collider? can we still measure λhhh to 5% at FCC-hh?

Δc6 =
1

0.565
[(

ΔσZhh

σSM
)2 + ∑

i,j

aiaj(Vc)ij]
1
2

16.8% 2.0%>>
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coupling ∆g/g kappa-fit EFT-fit

hZZ 0.38% 0.50%

hWW 1.8% 0.50%

hbb 1.8% 0.99%

Γh 3.9% 2.3%

(definition for higgs coupling precision: 1/2 of partial width precision)

ILC250: ∫Ldt = 2 ab-1 @ 250 GeV

SMEFT fit: typical difference with kappa fit
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+ 4 SM parameters: g, g’, v, λ
10 operators (h,W,Z,γ): cH, cT, c6, cWW, cWB, cBB, c3W, cHL, c’HL, cHE

+ 5 operators modifying h couplings to b, c, τ, μ, g

+ 2 parameters for h->invisible and exotic
+ 2 operators for contact interactions with quarks

global SMEFT fit: full formalism (23 pars.)
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+

Electroweak Precision Observables

Triple Gauge boson Couplings

Higgs observables at LHC & e+e-

+

strategy to determine all the 23 parameters at e+e-

(9)

(3)

(3+12x2)

2 for polarized

• all the 23 parameters can be determined simultaneously 

(details in backup)



Te
SM

BSM @ 500GeVBSM @ 1TeV

SMλ / λ
0.5 1 1.5 2

 [%
]

λ
 / λδ

10

210

ZHH @ 500 GeV→-+e+e
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Higgs self-coupling: when λHHH ≠ λSM?

• λΗΗΗ can be enhanced significantly in BSM 

• complementarity between ZHH & ννHH (& LHC): interference nature 

• if λΗΗΗ / λSM = 2, λΗΗΗ be measured to ~13% using ZHH at 500 GeV e+e-
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—>Br(H->ZZ*) very small

—> better option!
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/ g

2
HZZ

Br(H ! ZZ⇤)
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Br(H ! WW ⇤)
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Duerig, et al., arXiv:1403.7734

ν

ν−

W

W
H

e+

e−

! bb̄
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@250 GeV

• we used to think W-fusion production is crucial…
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From observables to couplings — Global Fit

�2 =
n�

i=1

(
Yi � Y �

i

�Yi
)2 + (Yj � Y �

j )T C�1
j (Yj � Y �

j )

in case there are correlated observables

Yj: column vector of correlated observables

Cj: covariance matrix for those observables

one example: TGCs in SMEFT fit



Ono, et. al, Euro. Phys. J. C73, 2343;    F.Mueller, PhD thesis (DESY)

(ii-2) Higgs direct couplings to bb, cc and gg

clean environment at e+e-; excellent b- and c-tagging performance

bb/cc/gg modes can be separated simultaneously by template fitting

H→Others SM BG

H→bb H→cc H→gg

MC Data

e+e- —> ZH —> ff(jj): b-likeness .vs. c-likeness
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(ii-3) search of Higgs to invisible

BR(H—>inv.) < 0.3% (CL95%)

Higgs portal dark mater search

right-handed beam polarization: much lower background

Z—>ll @ ILCZ—>qq @ ILC
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BR < 0.1-0.01% @ ILC, Liu et al, arXiv:1612.09284

(ii-3) search of Higgs exotic decays



efficiencies breakdown (leptonic recoil)

72

every cut is applied very carefully to avoid large bias, still ~1%

nevertheless, it becomes almost a paradox:
no cut, no bias; looser cuts, less bias
extremely tighter cuts,  less bias; 
too loose or too tight cuts -> remain too much background 
or too little signal -> bad precision measurement



efficiencies breakdown (hadronic recoil)

73

relative bias can be as large as ~15%



a nice trick: categorization
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if we have a complete list of categories

�ZH = �cat1 + �cat2 + �cat3 + �cat4 + · · ·

then we only need to keep all selection cuts independent of decay 
mode in each category; 
selections cuts among categories can be very different 

�ZH = �H�invisible + �H�visible

for example



a realistic solution: make use of individual BR measurement
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�ZH =
NS

RfL�̄
�̄ �

�

i

Bi�i

NS: # of signal 
Rf: BR of Z->ff 
L: int. luminosity 
Bi: BR of H decay mode i 
εi: efficiency of mode i

if every εi is same -> ΣBi = 1; no need for any knowledge about Bi

nevertheless, we can measure many of the σxBi; assume i=1..n is 
known with ΔBi; i=n+1,… is unknown, sum up to Bx;

known modes unknown modes

leptonic recoil, demonstrated possible δσZH~0.1% for Bx<10%

systematic error to σZH

hadronic recoil, still need more work for δσZH  <1% for Bx<10%
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expected precision of λ: impact from analysis & √s
ννHH

for ννHH: significantly better from 500 GeV to 1 TeV, δλ/λ~10% achievable 
at >= 1TeV; not drastically better, from 1 TeV to 3 TeV, improved by 50%
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strategy to determine all the 23 parameters
• mW and α(mZ) -> g, g’; 
• GF -> v; mh -> λ; mZ -> cT; 
• Al and Γl -> cHL+cHL’, cHE; 
• ΓW and ΓΖ -> cW, cZ; 

• g1Z -> cHL’; κγ -> cWB; κλ -> c3W; 

• BR(h->γγ) and ΒR(h->γΖ) -> cBB, cWW; 
• σZH -> cH; σZHH -> c6; 
• BR(h->bb/cc/gg/μμ/ττ) -> yb, yc, cg, yμ, yτ; 
• BR(h->invisible) and BR(h->other); 
• cWW is helped by ALR in σZH, angular meas., W-fusion; 
• cHL/cHL’/cHE are helped by ALR in σZH
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Higgs self-coupling: when λHHH ≠ λSM?

constructive interference in ZHH, while destructive in ννHH (& LHC) —> 
complementarity between ILC & LHC, between √s ~500 GeV and >1TeV

if λΗΗΗ / λSM = 2, Higgs self-coupling can be measured to ~15% using 
ZHH at 500 GeV e+e-

Duerig, Tian, et al, paper in preparation
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λhhh by double / single Higgs processes

(Physics Briefing Book, arXiv:1910.11775)
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benchmark BSM models 

̶> quantitative assessment for models discrimination
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model parameters (chosen as escaping direct search at HL-LHC)
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BSM benchmark models discrimination at ILC250
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effect of improvement from TGC, ννH, ZH at 500GeV
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simplifications of our analysis
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• at tree level, and to linear order in D-6 coefficients 

• ignore some possible D-6 corrections involving light 
leptons, e.g. 4-fermion operators 

• avoid using observables that involve contact interactions 
that include quark currents (see more later) 

• ignore the effects of CP-violating operators



on-shell renormalization
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• D-6 operators modify the SM expressions for precision 
electroweak observables, thus shift the appropriate values 
for the SM couplings —> g, g’, v, λ free parameters 

• D-6 operators also renormalize the kinetic terms of the SM 
fields —> rescale the boson fields
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• 0.1% from theory computations 

• 0.1% from luminosity  

• 0.1% from beam polarizations 

• 0.1%⊕0.3%/sqrt(L/250) from b-tagging and analysis

systematic errors included in the global fit

improvement factors in S2
• 10% from better jet-clustering algorithm 

• 20% from better flavor-tagging algorithm 

• 20% from including more signal channels in h->WW* 

• x10 better for ALR using e+e- -> γ Ζ at ILC250



expected meas. for direct observables
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estimates at ILC by full simulation

(arXiv: 1708.08912; numbers are in %, for nominal ∫Ldt = 250 fb-1)

I 
L 
D

S 
i 
D
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EFT input from TGCs in e+e- -> W+W-

(arXiv: 1708.08912; numbers are in %, for nominal ∫Ldt = 500 fb-1 shared 
equally by left-/right- polarized data)



EFT input: EWPOs
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EFT input: EWPOs (7)
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δg, δg’, δv, δλ, cT

(δΧ=ΔX/X)



EFT input: EWPOs (7)
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cHL+c’HL, cHE



EFT input: TGC (3)
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�A = �6g2c3W

�A = 1 + (8cWB)



EFT input: TGC (3)
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EFT input: BR(h->γγ)/BR(h->ZZ*), BR(h->γZ)/BR(h->ZZ*)

94

(2: HL-LHC)



EFT coefficients
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+ 4: g, g’, v, λ

10: cH, cT, c6, cWW, cWB, cBB, c3W, cHL, c’HL, cHE

can already be determined,  
except c6, cH

—> Higgs observables @ e+e-



EFT input: σ(e+e- —>Zh), σ(e+e- —> Zhh)
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• cH has to be determined by inclusive σZh measurement

• c6 has to be determined by double Higgs measurement

• h couplings to b, c, τ, μ, g 

• Γ(h->invisible), total decay width

EFT input: BR(h—>XX)

note: beam polarizations provide several independent (redundant) 
set of σ,σxBR input, which are powerful to test EFT validity



two more parameters: CW, CZ for Γ(h->WW*) and Γ(h->ZZ*)
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(c’X: contact interactions)

EFT input:

(similar for Z)


