#### Indirect Higgs Self-coupling measurement using single Higgs production

Tatsuya Masubuchi University of Tokyo (ICEPP)





## Introduction: ILC250 can constrain $\kappa_{\lambda}$ ?

- LHC can constrain  $\kappa_{\lambda}$  with both direct/indirect ways
  - Direct HH measurement is powerful, but indirect measurement may provide complemental information



2

meeting

LC-J Physics WG

## Indirect $\kappa_{\lambda}$ measurement with single Higgs production

- Single Higgs production and decay does not depend on trilinear coupling  $\lambda$  in LO diagram
- Diagrams with trilinear coupling can contribute to higher order EW correction



#### **Theoretical Setup**

 Single Higgs production weakly depends on k<sub>λ</sub> through NLO EW correction, but cross section is much larger than HH production → Single Higgs measurement can constrain k<sub>λ</sub>





#### Kinematic dependence on C<sub>1</sub>

- C<sub>1</sub> and K<sub>EW</sub> depends on the kinematics
  - $\rightarrow$  Differential measurement would be more sensitive to  $\kappa_{\lambda}$



#### VBF production

Inclusive ~0.6%

Kinematic dependence is not so large (slight dependence on  $p_T^H$  and  $p_T^{j1}$ )

#### ZH production

Inclusive ~1.2%

Kinematic dependence on  $p_T(H)$  and m(ZH)Sensitive in low  $p_T$  region

arXiv:1709.08649

LΟ Ο(λ<sub>3</sub>)

Differential

Inclusive

600

LΟ Ο(λ<sub>3</sub>)

Differentia

Inclusive

700

#### **Kinematic dependence on C**<sub>1</sub>

- $C_1$  and  $K_{EW}$  depends on the kinematics
  - $\rightarrow$  Differential measurement would be more sensitive to  $\kappa_{\lambda}$



#### WH production

Inclusie ~1.0%

Kinematic dependence on  $p_{\mathsf{T}}(\mathsf{H})$  and m(WH) Sensitive in low  $p_{\mathsf{T}}$ 

#### ttH production

Inclusive 3.5%

 $p_T(H)$  and  $p_T(t)$  dependence is large ~5% in low  $p_T$ , 7-10% on m(tH), m(ttH)

6

arxiv:1709.08649

#### How to measure?

- To maximize the sensitivity to  $\kappa_{\lambda},$  use all available production and decay modes for single Higgs analyses
- Inclusive production cross section + decay (κ-framework)
- Differential cross section measurement (Simplified Template Cross Section, STXS) for VBF, VH, ttH

$$n_{i,f}^{sig}(\kappa_{\lambda},\kappa_{m}) \propto \mu_{i}(\kappa_{\lambda},\kappa_{m}) \times \sigma_{i}^{SM} \times \mu_{f}(\kappa_{\lambda},\kappa_{m}) \times BR_{f}^{SM} \times (\epsilon \times A)_{if}$$

**Correction of STXS bin(i)** Correction of decay(f)



#### \*No available EW correction for ggF → use only inclusive measurement



#### Experimentally, difficult to measure differential cross-section (STXS) in all phase spaces!

3/4/25

#### Parametrize ELO effect in STXS bin

Equation expands to STXS bins (j=STXS bin)

Parametrization of C1 in STXS bins

Measure cross section for each STXS bin(differential info)

$$\frac{\sigma_{NLO_{EW}}^{i}}{\sigma_{NLO_{EW},SM}} = Z_{H}^{BSM} \left[ \frac{(k_{\lambda} - 1)\boldsymbol{C}_{1}^{i}}{\boldsymbol{K}_{EW}^{i}} + 1 \right]$$



κ

37

LHCHWG-2022-002

#### **Experimental Measurement**



## STXS measurement ( $H \rightarrow \gamma \gamma$ )

- $H \rightarrow \gamma \gamma$  (simple analysis but complicated STXS)
  - Very simple selection for Higgs candidate:  $p_T^{\gamma}/m_{\gamma\gamma} > 0.35/0.25$ ,  $|\eta_{\gamma}| < 2.37$  (excl. 1.37 <  $|\eta_{\gamma}| < 1.52$ )
  - Separate each signal process by multi-class BDT using jet/lepton kinematics, top reconstruction



• Extract cross section by fitting  $m_{yy}$  distribution







## STXS measurement (H→ZZ)

- H→ZZ→4I
  - Purity of Signal is quite high but statistically very limited (for non ggF category)
  - Event categorization done sequentially (ttH→VH→H+2j(VBF),H+0/1j(ggF)) using kinematic info
  - NN specified each production mode is final discriminant
  - Still not enough sensitivity(statistics) to measure differential cross section for VH and ttH





2

n

3

5

6

 $\sigma \cdot B / (\sigma \cdot B)_{_{\rm SM}}$ 

### STXS measurement (H→WW, H→TT)

- H→WW→IvIv
  - Measure STXS for only ggF and VBF production modes (6 ggF bin, 5 VBF bin)



#### • Н→тт

- High sensitivity for VBF production (no differential measurement yet)
- One ttH bin



## 2023/4/25

## STXS measurement (VH→bb)

- One of most sensitive channel for VH production mode
- Optimize the analysis for 0-lepton (ZH→vvbb),
  1-lepton(WH→lvbb), 2-lepton(ZH→llbb) separately
- Boosted H $\rightarrow$ bb events used for  $p_T^V > 400 \text{ GeV}$
- Very difficult to access to lower p<sub>T</sub><sup>V</sup> region due to high background rate and trigger threshold
  - 0-lepton (p<sub>T</sub><sup>Z</sup> > 150 GeV)
  - 1-lepton (p<sub>T</sub><sup>W</sup> > 150 GeV)
  - 2-lepton (p<sub>T</sub><sup>Z</sup> > 75 GeV)

| STXS region           |                             | SM prediction |   |      | Measurement |    |      | Stat. unc. | Syst. unc. [fb] |      |      |
|-----------------------|-----------------------------|---------------|---|------|-------------|----|------|------------|-----------------|------|------|
| Process               | $p_{\rm T}^{V, t}$ interval | [fb]          |   | [fb] |             |    | [fb] | Th. sig.   | Th. bkg.        | Exp. |      |
| $W(\ell \nu)H$        | 150-250 GeV                 | 24.0          | ± | 1.1  | 16.9        | ±  | 12.4 | 8.1        | 0.8             | 7.3  | 5.7  |
| $W(\ell \nu)H$        | 250–400 GeV                 | 5.8           | ± | 0.3  | 6.4         | ±  | 2.3  | 2.0        | 0.3             | 0.9  | 0.6  |
| $W(\ell \nu)H$        | > 400 GeV                   | 1.3           | ± | 0.1  | 1.9         | _± | 1.1  | 0.9        | 0.2             | 0.4  | 0.3  |
| $Z(\ell\ell/\nu\nu)H$ | 75–150 GeV                  | 50.6          | ± | 4.1  | 49.5        | ±  | 36.9 | 25.9       | 6.3             | 18.5 | 20.6 |
| $Z(\ell\ell/\nu\nu)H$ | 150–250 GeV                 | 18.8          | ± | 2.4  | 20.0        | ±  | 6.4  | 5.1        | 1.8             | 2.5  | 2.2  |
| $Z(\ell\ell/\nu\nu)H$ | 250-400 GeV                 | 4.1           | ± | 0.5  | 4.0         | ±  | 1.6  | 1.5        | 0.4             | 0.4  | 0.3  |
| $Z(\ell\ell/\nu\nu)H$ | > 400 GeV                   | 0.7           | ± | 0.1  | 0.2         | ±  | 0.6  | 0.5        | 0.1             | 0.3  | 0.2  |





#### STXS measurement (ttH→bb)

Inclusive

- One of important channels for ttH production cross section measurements
- Analysis region
  - Dilepton (2 leptons,  $N_{b-jets} \ge 4$ )
  - Single-lepton (1 lepton,  $N_{iets} \ge 6$ ,  $N_{b-iets} \ge 4$ )
  - Boosted Higgs channel (1 lepton,  $N_{\text{jets}} \ge 4$ ,  $N_{\text{b-jets}} \ge 2$ ,  $\geq$  1 large-R jet with  $p_T \geq$  300 GeV)
- Complicated and difficult channels
  - Higgs reconstruction: jet assignments determined by BDT for resolved, DNN for boosted channel
    - $\rightarrow$  Reconstruct Higgs p<sub>T</sub>
  - large tt+bb background: Use BDT (signal vs background) as final discriminant
  - tt+bb theory uncertainties are limiting systematics



3rd ILC-J Physics WG meeting

#### **Combined STXS measurements**



## Constraint on $k_{\lambda}$ from single H

- Constrain  $\kappa_\lambda$  with measured "differential(STXS bin)", inclusive cross section and BR
- constrain  $\kappa_{\lambda}$  from single Higgs:

obs: -4.0 <  $\kappa_{\lambda}$  < 10.3 (exp: -5.2 <  $\kappa_{\lambda}$  < 11.5) at 95% CL (other couplings fixed to 1)



#### $\kappa_{\lambda}$ - $\kappa_{t}$ constraint

- HH direct measurement can't constraint both  $k_t$  and  $k_\lambda$  simultaneously
- Combined measurements of H+HH constrain  $k_t$  and  $k_\lambda$



**Constraint from direct HH measurements** 

#### Summary

- Introduced differential cross section measurement for VBF/VH/ttH production to constrain  $k_{\lambda}$
- Theoretically, low pT regions are more important to constrain  $k_\lambda,$  but experimentally challenging to measure sensitive regions at LHC
  - More differential measurements will come in Run2 data (e.g. VH $\rightarrow$ TT, VH( $\rightarrow$ WW)
  - Measure difficult regions using clean channels with Run3 (and HL-LHC) data

- Is it possible to apply to ILC? Can measure ZH differential cross section?
- → Maybe able to provide complemental information (combine with LHC?)

# Backup

19

3rd ILC-J Physics WG meeting

#### Reference

- ATLAS
  - HH→4b: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-03/</u>
  - VHH: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-31/">https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-31/</a>
  - HH→bbtt: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-40/</u>
  - HH→4b reso: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-41/</u>
  - HH→bbγγ: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-34/</u>
  - boosted di-т: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-22/</u>
  - HH→bblvlv: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-33/</u>
  - H+HH Combination: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-03/">https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-03/</a>
  - Prospect: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-053/">https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-053/</a>
- CMS
  - HH→2b+lep: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-004/index.html</u>
  - HH→4W, WWтт, 4т: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-21-</u> 002/index.html
  - HH→2b2T: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-010/index.html</u>
  - HH→4b: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-005/index.html</u>
  - HH→2b2γ: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-018/index.html</u>
  - HH→bbZZ: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-18-013/index.html</u>
  - HH→WWγγ: <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-21-014/index.htm</u>
  - Combinaton: <a href="http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html">http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html</a>

## **Higgs Measurement Overview at LHC**

- Higgs boson discovery providing plenty of fundamental measurements
- Higgs mass (ATLAS: H→ZZ→4I): 124.99±0.18(stat)±0.04(sys) GeV





#### Higgs coupling

- Measure coupling modifiers ( $\kappa = g_x^{measure}/g_x^{SM}$ ) using various production and decay modes
- 7-11% for 3rd generation fermion, W/Z
- ~30% for  $\mu, \gg 100\%$  for charm
- Upper limit on BR(H→invisible ) 7.7%

#### Self-coupling impact on Single-Higgs

$$\mu_{if}(\kappa_{\lambda}) = \frac{\mu_i(\kappa_{\lambda})}{\mu_f(\kappa_{\lambda})} \times \frac{\mu_f(\kappa_{\lambda})}{\mu_f(\kappa_{\lambda})}$$

• Impacts on the production modes (i) and the decay channels (f) expressed as:

$$\mu_i(\kappa_\lambda,\kappa_i) = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}} = Z_H^{\text{BSM}}(\kappa_\lambda) \left[ \kappa_i^2 + \frac{(\kappa_\lambda - 1)C_1^i}{K_{\text{EW}}^i} \right] \qquad \mu_f(\kappa_\lambda,\kappa_f) = \frac{\mathsf{BR}_f^{\text{BSM}}}{\mathsf{BR}_f^{SM}} = \frac{\kappa_f^2 + (\kappa_\lambda - 1)C_1^f}{\sum_j \mathsf{BR}_j^{\text{SM}} \left[ \kappa_j^2 + (\kappa_\lambda - 1)C_1^j \right]}$$

• Z<sup>BSM</sup>H: wave function renormalization, accounts for the universal correction

$$H = \frac{1}{1 - (\kappa_{\lambda}^2 - 1)\delta Z_H}, \text{ with } \delta Z_H = -1.536 \times 10^{-3}.$$

- C<sub>1</sub>: process and kinematic-dependent coefficients, it encodes the magnitude of the  $\kappa_{\lambda}$ -dependent linear correction
- $K_{\text{EW}}$ : represents the full set of NLO EW corrections
- $\kappa_f$  and  $\kappa_i$  consist of:  $\kappa_{\lambda}$ ,  $\kappa_V$  ( =  $\kappa_W = \kappa_Z$  ),  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_{\tau}$ ,  $\kappa_c$  ( =  $\kappa_t$ ),  $\kappa_s$  ( =  $\kappa_b$  ),  $\kappa_{\mu}$  ( =  $\kappa_{\tau}$  )

2023/4/25

#### STXS measurement H→TT

 Experimentally, not possible to measure differential cross-section (STXS) in all phase spaces





## **Higgs Measurement Overview at LHC**



No significant deviation from SM observed (yet!)

#### **Kinematic dependence on C**<sub>1</sub>

- C1 and  $K_{EW}$  depends on the kinematics
  - $\rightarrow$  Differential measurement would be more sensitive to  $\kappa_{\lambda}$



tH production pTH and ptT depencende is small ~5% on m(tH), m(tHj)

#### $H \rightarrow \gamma \gamma STXS$ measurement

Event Fraction

• Remove variables which distort  $m_{yy}$  mass distribution (>5% liniear correlation with  $m_{yy}$ )



BDT score

# 3rd ILC-J Physics WG meeting

27



#### Categorization





#### ttH STXS measurement









#### **H+HH combination**

- H+HH combination
- Simultaneous fit can constraint  $k_t$  and  $k_\lambda$  (Not possible in only HH anaysis)



## **NLO EW correction**



- Inclusive cross section: ~1.2% difference
- differential distribution difference: ~2% (lowpTH, m(ZH)



#### • VBF

- Inclusive cross section: 0.6% difference
- differential: at most ~0.7%

700

#### **Higgs decay branching ratio**



- Higgs boson decays to other SM particles
  - Observed Higgs mass(~125 GeV) is experimentally really good
  - Higgs boson is able to decay various particles
    - Property measurement with different decay modes
  - H→bb decay mode is dominant

| bb    | WW   | gg   | тт   | СС   | ZZ   |
|-------|------|------|------|------|------|
| 58%   | 21%  | 8.2% | 6.3% | 2.9% | 2.6% |
| γγ    | Ζγ   | μĻ   |      |      |      |
| 0.23% | 0.15 | 0.0  | )22% |      |      |



## **Higgs Production at LHC**

• Gluon-fusion process is dominant at LHC (Gluon collider!!)



 Higgs physics strategy is built by the combination of production and decay (can not observe all Higgs events experimentally!!)

Lots of QCD background, not triggerable, detector coverage...

#### **Higgs combined Results ~Production/Decay~**

 Main Production channels and decay modes are already observed in Run1 and Run2 data



No any significant deviation from SM (10-20% precision for main channels)

## Higgs combined results ~Coupling~

- Measured couplings between Higgs boson and SM particles  $\kappa$ -framework:  $\kappa = g_x^{measure}/g_x^{SM}$  $\int_{a}^{b} \int_{b}^{b} \frac{\sigma(pp \rightarrow VH) \cdot BR(H \rightarrow bb)}{\epsilon_{H}^{2} \sigma_{SM} \cdot BR_{SM}}$
- Coupling modifier  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$ ,  $\kappa_\mu$ ,  $\kappa_W$ ,  $\kappa_Z$  (k<sub>c</sub>) (measured coupling normalized to SM)
- Precision is 7-11% for top, W/Z, bottom, τ, ~30% for μ
  - Yukawa coupling works well in 10<sup>3</sup> different scale (O(100 MeV) ~ O(100 GeV)!!
  - Higgs boson builds generation of quark and lepton





