

Baryogensis Related Topics at Belle II

Akimasa Ishikawa (KEK)

Baryogensis Related Topics at Belle II

- EW Baryogenesis
 - B decays : $b \rightarrow s\gamma$ and $B \rightarrow \tau v$
 - Tau decays : EDM
- Leptogenesis
 - Sterile neutrino searches at GeV scale
- B-mesogenesis
 - B meson decaying into dark matter having baryon number
 - Not related to Higgs
- Suehara-san asked to give the topics on B decays
 - Tau will be covered at next meeting?

EW Baryogenesis and B physics

- Sakharov's three conditions and EW Baryogensis
 - 1. B violation ← sphaleron
 - 2. C and CP violations CPV in Higgs sector
- B Physics
 - Sensitive to BSM Higgs due to its heaviness
 - Especially to 2HDM type-II
 - Branching Fraction measurements → Extended Higgs sector → 3. Non thermal equilibrium
 - New CPV Searches → CPV in Higgs sector → 2. C and CP violations

2HDM and B decays

• B⁰ Mixing, $D \rightarrow sy$, $B \rightarrow \tau v$

Mixing and chirality suppressed decays

I will talk on the $b \rightarrow s_{\rm V}$ and $B \rightarrow \tau_{\rm V}$ which is only possible at Belle II

Belle II @ SuperKEKB

Highest luminosity collider experiment

- L=6.5x10³⁵ cm⁻²s⁻¹
- E_{CM}=10.58GeV on Y(4S)
 - Just above the BB threshold to produce B meson pair efficiently
 - Can go higher, Y(5S) and above
- Energy-asymmetric collisions
 - 7.0GeV x 4.0GeV
 - To boost B mesons to measure time dependent CPV
- 50ab⁻¹ will be accumulated around 2034
 - Containing 1x10¹¹ B mesons, 1.5x10¹¹ charm hadrons, and 0.9x10¹¹ τ
 - Processes with cross sections of O(1)ab are reachable
- Physics
 - Flavor physics : B, D and τ
 - Including HVP with radiative return for muon g-2
 - Light dark matter and new particle searches
 - And more

Luminosity Projection

Belle II Detector

- Significant detector improvements
 - Better and Larger VXD → Time dependent CPV, especially with long lived Ks.
 - − Trigger improvement → single photon final state etc.

Belle II Cons and Pros (VS LHCb)

- Cons.
 - Statistics of b hadrons!! (1nb VS 144µb)
 - We will only have 10¹¹ B mesons with 50ab⁻¹ on Y(4S) and 5x10⁸ B_s with 5ab⁻¹ on Y(5S)
 - No large samples of b baryon and B_c
 - Production of these hadrons are not yet established around Y(nS).
 - Proper time resolution is worse and B meson is not so boosted.
 - Background suppression with B vertex is not so easy
 - Bs mixing (Δm_s) can not be measured (while $\Delta \Gamma_s$ can be measured).

20230425

Belle II Cons and Pros (VS LHCb)

- Pros.
 - Smaller background cross section (O(1)nb VS O(10)mb)
 - ~3.4nb for ee \rightarrow qq, ~1nb for ee \rightarrow Y(4S) \rightarrow BB
 - Almost 100% trigger efficiency for BB events.
 - Main trigger : ntrack >= 3 || ECL energy sum >1GeV || ECL nCluster >=4
 - Absolute BF measurement possible.
 - High hermeticity $4\pi \times 94\%$
 - High reconstruction efficiency of O(1)~O(10)%.
 - Full reconstruction possible (Reconstruction of the other B meson)
 - More than one missing neutrino modes \rightarrow B \rightarrow D(*) τv , B $\rightarrow \tau v$, B $\rightarrow K^{(*)}vv$, B $\rightarrow K\tau\tau$, B $\rightarrow vv$ or DM
 - Detection of electron
 - Detection efficiency of electron is almost the same as that of muon → test of LFU (R_K anomaly gone since careless LHCb analysis was improved to normal one)
 - Easy to recover bremsstrahlung photon
 - Detection of neutrals
 - γ , π^0 and Ks can be reconstructed efficiently \rightarrow sum-of-exclusive approach $B \rightarrow Xsl^+l^-$, $B \rightarrow \pi^0 \pi^0$, $B_{(s)} \rightarrow \gamma \gamma$
 - Better energy resolution of hard $\gamma \rightarrow B \rightarrow \rho \gamma$ with good PID device to suppress $B \rightarrow K^* \gamma$

Belle II Operation

- Physics run since 2019
- Stop in June 2022 for Long Shutdown1 to install PXD layer2
- World records
 - $L = 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} (47 \text{ nb}^{-1}/\text{s})$
- 428fb⁻¹ has been accumulated so far (Belle 1040fb⁻¹).

b→sγ

• EW penguin

$\mathsf{BF}(\mathsf{B} \rightarrow \mathsf{X}_{\mathsf{s}} \gamma)$

- Exp and theory are in good agreement
 - Exp ~5% (systematic dominant)
 - Improvement at Belle II possible
 - Thoery ~5%
- M. Misiak et al, 2002.01548
- Also improvements possible
- Constraints
 - H+ in 2HDM type-II : M_H >800GeV
 - Stop in Natural SUSY

Baer, Bager and Nagata (2017)

BF(B \rightarrow X_s γ) in 2034

- Exp : Already systematic dominant
 - But large Belle II data can reduce the uncertainty to ~3%
 - We have already reduced the photon selection syst from 2% to 1%
- Theory
 - Part of Non-perturbative can be reduced by data driven way
 - Other uncertainties also reducible
 - 3.5% in 2025

Private communication with M.Misiak

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.4%	0.94%	0.69%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%

Belle II Physics book 1808.10567

$\Delta A_{CP}(B \rightarrow X_{s}\gamma)$

• $A_{CP}(B \rightarrow X_s \gamma)$ is sensitive to CPV in NP but theory uncertainty already dominant

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{X}_s \gamma) - \Gamma(B \to X_s \gamma)}{\Gamma(\bar{B} \to \bar{X}_s \gamma) + \Gamma(B \to X_s \gamma)}$$

 New observable ∆A_{CP} is null in SM and sensitive to CPV in extended Higgs sector

$$\begin{split} \Delta A_{CP} &= A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma) \\ &= 4\pi^2 \alpha_s \frac{\tilde{\Lambda}_{78}}{m_b} \mathrm{Im} \left(\frac{C_8}{C_7}\right), \\ &\approx 0.12 \left(\frac{\tilde{\Lambda}_{78}}{100 \text{ MeV}}\right) \mathrm{Im} \left(\frac{C_8}{C_7}\right), \end{split} \text{M. Be}$$

M. Benzke, S. J. Lee, M. Neubert, G. Paz, JHEP 08 (2010) 099

- Belle measured the observable in 2018
 - Found dominant syst error can be reducible → Belle II further improve the measurement

 $\Delta A_{CP} = [+3.69 \pm 2.65 (\text{stat.}) \pm 0.76 (\text{syst.})]\% \text{ Watanuki, Ishikawa et al, PRD 99, 032012 (2019)}$ $Observables \qquad Belle \ 0.71 \text{ ab}^{-1} \quad Belle \ \text{II} \ 5 \text{ ab}^{-1} \quad Belle \ \text{II} \ 50 \text{ ab}^{-1}$ $\Delta A_{CP} (B \to X_s \gamma)_{\text{sum-of-ex}} \quad 2.7\% \qquad 0.98\% \qquad 0.30\%$

$\Delta A_{CP}(B \rightarrow Xs\gamma)$ and EW Baryogensis

 Additional Yukawa coupling ρ appears in general 2HDM (no Z₂ symmetry)

$$\begin{split} y_{hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} s_{\beta-\alpha} + \frac{\rho_{ij}^{f}}{\sqrt{2}} c_{\beta-\alpha}, \\ y_{Hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} c_{\beta-\alpha} - \frac{\rho_{ij}^{f}}{\sqrt{2}} s_{\beta-\alpha}, \\ y_{Aij}^{f} &= \mp \frac{i \rho_{ij}^{f}}{\sqrt{2}}, \end{split}$$

- If ρ has complex phase, this could generate CPV and thus EW Baryogensis is possible
- ΔA_{CP} is sensitive to phase in ρ
- Combining H→bb coupling measurements at HL-LHC/ILC, additional bottom Yukawa and phase can be searched
 - If found it → Higgs self coupling measurments at ILC500 ∠

$B \rightarrow \tau \nu (\mu \nu)$ in SM and 2HDM

- BF(B $\rightarrow \tau \nu$) in SM
 - Helicity suppression : Amp $\propto m_{\tau}$

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

- BF(B $\rightarrow \tau v$) in 2HDM type-II
 - No helicity suppression with Higgs exchange
 - Higgs coupling $\propto m_{\tau}$

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\mathsf{SM}} \times r_H$$

$$r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)^2$$

×10⁻³

0.3

- BF only dependent on r_{H} (function of $tan\beta/m_{H}$)
- Flavor independent so the same can be applied to $B \rightarrow \mu \nu$

B(B \rightarrow τ v) and B(B \rightarrow μ v)

- Precision of BF($B \rightarrow \tau \nu$) at Belle II
 - 2x better tagging efficiency (the other B recon)
 - 4% precision on B (B $\rightarrow \tau v$) with 50ab⁻¹

	Integrated Luminosity (ab^{-1})	1	5	50
hadronic tag	statistical uncertainty (%)	29	13	4
	systematic uncertainty $(\%)$	13	7	5
	total uncertainty (%)	32	15	6
semileptonic tag	statistical uncertainty (%)	19	8	3
	systematic uncertainty (%)	18	9	5
	total uncertainty (%)	26	12	5

- BF(B $\rightarrow \mu \nu$)
 - 12% with 50ab⁻¹ (dominated by statistical uncertainty)

A Scenario of Evidence for Charged Higgs

- $B \rightarrow X_s \gamma$: tan β independent
- $B \rightarrow \tau v$: tan β/m_{H} = const.
- With 50/ab, M_{H+} =800GeV and tan β =40 can be found.

Belle II Physics book 1808.10567

Summary

- B meson is a good tool to search for extended Higgs sector and its CPV
 - Hence, EW Baryogenesis
- The branching fractions of b→sγ and B→τν and and difference of CPV in b→sγ can test the EW baryogenesis via bottom transport
 - Only Belle II can measure the decays
- Stay tuned

backup