The LUXE Experiment

Wolfgang Lohmann

(Brandenburg University of Technology Cottbus and RWTH Aachen University)

Wolfgang Lohmann | 02.07.2020 Page 1

Explore Quantum Electrodynamics at high fields

Pertubative QED predicts electromagnetic phenomena with excellent precision, e.g. Lamb shift, anomalous magnetic moment of the electron, Bhabha scattering

At high fields, Heisenberg and Euler predicted in Z.Phys. 98 (1936) 714-732 Title: "Folgerungen aus der Dirac`schen Theorie des Positrons"

'electromagnetic fields can create matter if they are strong enough'

Critical field strength:
$$|\mathfrak{E}_k| = \frac{m^2 c^3}{e\hbar} = \frac{1}{137} \frac{e}{(e^2/mc^2)^2} = 1.32 \ 10^{18} \ \text{Vm}^{-1}$$

Denoted as ,Schwinger limit'!

 \mathfrak{E}_k accelerates an electron over the distance of its Compton wavelength to E_e equal to its mass

For illustration: In a silicon sensor of 300 μm thickness and this field strength: $E_e = 400 \mbox{ TeV}$

New phenomenon: Field induced tunneling of e⁺e⁻ pairs off the vacuum, Colloquial: ,the vacuum starts boiling⁴

Source of high electrical fields: chirped pulse amplification (CPA) laser, focal intensity 10²¹ Wcm⁻¹

 $\mathfrak{E}_{L} = 10^{14} \, \mathrm{Vm^{-1}}$

Electron at high energy in a laser pulse: $\mathfrak{E}^* = \gamma \mathfrak{E}_L (1 + \cos \theta)$

$$\gamma = E_e/m_e$$

Example:

For $E_e = 10 \text{ GeV}$, $\gamma \approx 10^4 \rightarrow \text{critical field strength}$ will be reached !

Processes

Non-linear Compton scattering

Breit-Wheeler process (BW)

$$\gamma + n\gamma_I \longrightarrow e^+ e^-$$

The initial photon might be the γ_C from non-linear Compton scattering (two step trident) or a dedicated high-energy photon beam

Key parameters	LUXE covered range	
	40 TW	350 TW (Laser)
Classical non-linearity parameter: $\xi = \frac{m_e}{\omega_L} \frac{\mathbf{v}_L}{\mathbf{v}_k}$	≤ 6	≤ 19
Quantum non-linearity parameter: $\chi = \mathfrak{E}^* / \mathfrak{E}_k$	≤ 1	≤ 3
Energy parameter: $\eta = \chi / \xi$	$10 \frac{-\xi^3 / X_{\gamma}}{5}$	
Consider BW: $\gamma + n\gamma_L \longrightarrow e^+ e^-$	 ₹ 1 0.50 	
Quantity to measure: $\Gamma_{BW} \sim \chi \exp\left(-\frac{8}{3} \frac{1}{\chi}\right)$	0.10 Multiphoton 0.05 0.5 1	Tunneling ~χ _γ e ^{-8/3} χ _r 5

ξ

Comparison to similar experiments

planned measurements

Compton spectra (number and energy of the scattered laser photons, or the final state electrons)

Number and energy of positrons

Search for ALPS

ASSOCIATION

Scalars or pseudoscalars with couplings to photons and electrons

Primary production, ALPS in the range of a few MeV

Secondary production, ALPS in the range of a few 100 MeV to GeV

Technicalities

XFEL linear accelerator at DESY

Electron beam

- 1.5 10⁹ e⁻ per bunch,
- E_e = 17.5 GeV,
- rate 10 Hz, one bunch per train for LUXE

Technicalities

LASER

- first run: 40 TW JETI, intensity 1.5 10²⁰ Wcm⁻² (focal width 3 μm)
- second run: upgrade to 350 TW, intensity 1.1 10²¹ Wcm⁻²

spacial pulse positions, pulse energy, and ξ .

area

The experiment - schematic

The experiment - schematic

The experiment - schematic

ASSOCIATION

Electron detection system

- Measurement range: 10⁴-10⁹ electrons per BX
- Scintillation screen covers the full momentum range, the Cerenkov detector 5-8 GeV
- Cerenkov detector developed for polarimetry the the ILC
- x y z
- 50 channels,
- radiator: Ar, to match the dynamic range
- SiPMs

- Screen thicknes: 0.5 mm
- Scintillator: Gandolinium Oxysulfide, Terbium doped
- Position resolution: 500 μm

Electron detection system

Photon detection systems

γ flux monitor

measures the particles backscattered from the photon dump

Photon detection systems

γ spectrometer

Photon conversion in a 200 μ m Kapton foil Scintillator screen, Gd₂O₂S:TB, LYSO Read out using an i-CCD camera

Expected scintillation output

Photon detection system

γ profiler

Measurement of the angular spectrum of photons (two stations)

Single crystal sapphire strip sensors

- Low CCE
- Fast
- Radiation hard

Investigation of a direction sensitive sapphire detector stack at the 5 *GeV* electron beam at DESY-II

•*JINST* 10 (2015) 08, P08008

200+200 strips Pitch: 100 μm

Positron detection

Wolfgang Lohmann | 02.07.2020 Page 20

Tracker

ELMHOLTZ ASSOCIATION

Four layers of ALPIDE silicon pixel sensors

- Pixel size 27x19 μ m², resolution 5 μ m
- binary readout

•
$$X/X_0 = 0.357 \%$$

- Detection efficiency 99 %
- Noise rate <10⁻⁵
- Used in ALICE ITS

Tracker

Performance studies

HELMHOLTZ

Si W (GaAs W) sampling calorimeter

Sensor plane design FCAL technology

Challenge: small Moliere radius (showers on top of widely spread background)

- Pad size: 5x5 cm²
- W thickness: 1 X₀
- Per tower 20 sensors/plates

HELMHOLTZ

ASSOCIATION

Advanced sensor techology (collaboration with Tomsk State University)

- Thickness of the sensor planes below 1mm
- Less cross talk to other pads
- Less lost contacts

FE electronics

- 130 nm TSMC technology, (charge sensitive peamplifier, 10 bit ADC)
- developed within FCAL, parts also used in the CMS HGCAL upgrade
- Data preprocessing with FPGA

Recent testbeam measurements, depostited energy in layer 3

Performance studies

ASSOCIATION

Wolfgang Lohmann | 02.07.2020 Page 26

Calice Prototype in LUXE

Version 1:

Supplement or cover part of the ECAL

Figure 1 Front view of the calorimeter

Version 2:

Measure electrons in BW studies

Conclusion

Physics

- LUXE will open a new avenue of research probing QED in electron-light and photon-light collisons
- LUXE will cross the Schwinger limit in the quantum nonlinear parameter, or the ,boiling point of the vacuum'
- New phenomena may occur there

Conclusion

Apparatus and detectors

- LUXE will be an electron-laser scattering experiment using the XFEL superconducting accelerator and a CPA laser (JETI40 → 350 TW)
- Several cutting-edge detector technologies developed for particle physics experiments will be applied
- A key subdetector is a finely grained and highly compact ECAL

backup

backup

Wolfgang Lohmann | 02.07.2020 Page 31

Figure 1 Front view of the calorimeter

ASSOCIATION

- Pad size 5 x 5 mm²
- 20 detector planes correspond to 12 X₀
- FE chip on sensor (less compact)
- Readout using Calice standard

