Sensor-level simulation of MAPS ECAL testbeam data

CALICE collaboration meeting

25.03.2021

Tim Rogoschinski

Forward Calorimeter: FoCal conceptual design

- upgrade of the LHC-ALICE experiment:
 FoCal
 - ightarrow installation planned in ~2026
 - \rightarrow SiW sandwich calorimeter
 - \rightarrow 3.4 $\leq \eta \leq$ 5.8, z = 7 m
- two components:
 - 1) hadronic (FoCal-H) and
 - 2) electromagnetic calorimeter (FoCal-E)
 - → low granularity cells (LG) pixel size ≈ 1cm² energy and time measurements
 - → high granularity cells (HG): ALPIDE (CMOS MAPS) pixel size $\approx 30 \times 30 \ \mu m^2$
 - shower separation and position determination

→ R&D directly applicable to whole electromagnetic calorimeter made of MAPS for linear collider

Electromagnetic Pixel Calorimeter 2 (EPICAL-2)

- second prototype in context of R&D for planned LHC-ALICE FoCal upgrade in ~2026
 → fully digital calorimeter prototype
- 24 layers with two ALPIDE chips each
 → chip size: 30 mm x 15 mm
- 512 x 1024 pixels per chip
 → pixel size: 26.88 µm x 29.24 µm

Electromagnetic Pixel **Cal**orimeter 2 (**EPICAL**-2)

- second prototype in context of R&D for planned LHC-ALICE FoCal upgrade in ~2026 → fully digital calorimeter prototype
- 24 layers with two ALPIDE chips each \rightarrow chip size: 30 mm x 15 mm
- 512 x 1024 pixels per chip \rightarrow pixel size: 26.88 µm x 29.24 µm

25.03.21

simulation utilizing Allpix² framework \rightarrow precise geometry implementation

ROOT

GEANT4

EPICAL-2 simulation utilizing Allpix²

A Monte Carlo simulation tool for silicon pixel detectors From incoming particle(s) to readout

simulation chain:

CALICE meeting - Tim Rogoschinski

25.03.21

EPICAL-2 simulation validation II by means of 5 GeV electron test beam data

cluster-size distribution

mean cluster size

→ small deviations for small clusters
 → marginal fewer large clusters in simulation

→ differences in sensitivity expected for data
 → will be corrected by calibration
 → simulation agrees rather well with data

EPICAL-2 simulation validation III by means of 5 GeV electron test beam data

track-like hit structures

Data: Hitmap Run1293 csize min200 Hit map large clusters

preliminary

Entries

Mean x

43029

496.8

11

20V

- \rightarrow simulation describes test-beam measurement
- \rightarrow essential for energy response and energy resolution
- \rightarrow extraction of mean μ and standard deviation σ from histograms

First attempt on energy response: linearity derived from number of hits and clusters

→ good linearity for mean value μ of hits in simulation → slightly greater deviation from linearity observed for test-beam data

First attempt on **energy resolution** derived from number of hits and clusters

simulation

test-beam data

- ightarrow simulation and test-beam resolution in the same order of magnitude
- ightarrow better energy resolution achieved for clusters than hits
- ightarrow first analysis and comparison show very good performance: work in progress

First look at higher energies energy response and energy resolution

- low energies: agreement with linearity for hits and clusters, promising energy resolution
- high energies: deviation from linearity up to ~10% for hits and ~35% for clusters, worsening of apparent energy resolution
- resolution and linearity both affected by **leakage** for 20 X₀ detector, easy to overcome
- expect additional contribution from cluster overlap, possible corrections to be investigated
- note: ALPIDE sensor optimized for tracking
 - → development of MAPS sensor with calorimeter-specific requirements could improve performance on timescale of any International Linear Collider use

CALICE meeting - Tim Rogoschinski

First look at higher energies

separation power

- large energy difference
- electrons close together
- $30 \text{ GeV electron} \longrightarrow$

ightarrow provoking case

First look at higher energies

separation power

- large energy difference
- electrons close together

ightarrow provoking case

First look at higher energies separation power ... in terms of pion decay

• assuming two showers emerge from photons γ_1 and γ_2 from a π^0 decay with separation $d \approx 40$ pixels $\cdot \frac{30 \,\mu\text{m}}{\text{pixels}} = 1.2 \,\text{mm}$ (conservative value)

Summary

- first results obtained from EPICAL-2 simulation utilizing Allpix²
 → detailed geometry implemented
 → precise modeling of measurement process
- simulation validation based on 5 GeV electron test-beam data
- investigation of **bulk properties** in EPICAL-2 simulation for test-beam energies
 → number of hits and clusters
 → energy resolution and linearity

\rightarrow EPICAL-2 simulation describes test-beam data

- first look at higher energies
 → promising energy resolution
 → shower constitution
 - ightarrow shower-separation capabilities

20

EPICAL-2 team

University of Bergen

Johan Alme Viljar Eikeland Ola Grøttvik Dieter Röhrich Emilie Solheim Kjetil Ullaland

Goethe University Frankfurt

Henner Büsching Johannes Keul Fabian Pliquett Tim Rogoschinski

University of Oslo

Qasim Malik Ketil Røed

Utrecht University

University of Birmingham

Robert Bosley Nigel Watson

Research and Production Enterprise LTU Kharkiv Ukraine

Vyacheslav Borshchov Ihor Tymchuk Rene Barthel Aart van Bochove Erik Broeils Naomi van der Kolk Gert-Jan Nooren Else Okkinga Thomas Peitzmann Sebastiaan van Rijk Marcel Rossewij Hiroki Yokoyama