## Megatiles for the AHCAL: hardware improvements and measurements with cosmic ray and testbeam data

Anna Rosmanitz

On behalf of the JGU team:

Volker Büscher, Phi Chau, Karl-Heinz Geib, Antoine Laudrain, Lucia Masetti, Sebastian Ritter, Marisol Robles, Christian Schmitt

Including the PRISMA detector lab team:

Peter Bernhard, Anastasia Mpoukouvalas, Quirin Weitzel

CALICE Collaboration Meeting - 25.03.2021





Bundesministerium für Bildung und Forschung





JOHANNES GUTENBERG UNIVERSITÄT MAINZ

## AHCAL Technological Prototype Design

- Individually wrapped 3 x 3 cm<sup>2</sup> scintillator tiles
- Tile thickness: 3 mm
- Read out with SiPMs
- 144 channels per board





## Megatile Concept

- Simplification of assembly process
- 36x36 cm<sup>2</sup> scintillator plate
  - Trenches filled with glue + TiO<sub>2</sub>
  - Scintillator wrapped in reflective foil
     ⇒Air gap
- Trench angle optimised for LY
  - Angle = 30°: minimal dead area
- 7 versions produced since 2017





#### Glue + TiO<sub>2</sub> Mixture

- LY depends on glue + TiO<sub>2</sub> mixture
  - Absorption/reflection vs λ depends on concentration, size and shape of TiO<sub>2</sub> granulate
- Trade-off:
  - Liquid enough to fill trenches
  - Adequate granularity
- Tested various mixtures
- Improved in latest prototypes



## Glue + TiO<sub>2</sub> Mixture

- Glues known to yellow with time
  - Amplified with UV light and additives (like TiO<sub>2</sub>)
  - Current choice: lowest ageing effect (10% yellowing threshold after > 15 years)
  - ⇒Epotek 301-2-FL



#### Development of Megatile

- Continuously tested in cosmic test stand in Mainz
- Megatile lying flat with pressure on top
- Scintillators on top and bottom as triggers



#### Megatile: A Promising Concept

High LY ≈ 32 pe/MIP (in MT6)
 ≈ as single wrapped tile



## Edge Channels

- High LY ≈ 32 pe/MIP
   ≈ as single wrapped tile
- But: Edges ≈ 20 pe/MIP
- Reason: Coating of edges technically difficult
- Simple workaround:
  - Adhesive reflective foil on edges
  - Limited improvement (included above)
- New solution: spray white varnish

|       | L         | 15.223        | 20.765 | 21.148 | 20.154  | 21.833 | 21.219 | 21.186 | 19.468 | 20.799 | 21.524 | 20.005 | 15.534 |   | pe |
|-------|-----------|---------------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|---|----|
|       | к         | 21.010        | 24.744 | 32.833 | 30.889  | 32.759 | 32.575 | 33.326 | 31.828 | 30.354 | 32.292 | 29.243 | 18.307 | - | 35 |
|       | J         | 19.499        | 30.607 | 33.137 | 32.796  | 34.949 | 33.749 | 33.907 | 32.087 | 31.232 | 32.417 | 29.506 | 20.434 |   |    |
|       | I         | 19.982        | 29.750 | 32.416 | 33.635  | 33.087 | 34.655 | 32.719 | 33.466 | 31.523 | 29.975 | 29.186 | 20.314 | _ | 30 |
|       | н         | 19.398        | 29.878 | 27.449 | 37.333  | 34.279 | 33.779 | 34.332 | 33.890 | 34.831 | 32.380 | 29.963 | 20.305 |   |    |
|       | G         | 17.056        | 28.444 | 25.276 | 31.338  | 34.043 | 32.897 | 34.425 | 34.225 | 32.313 | 31.504 | 29.906 | 20.768 |   | 25 |
| 25    | F         | 19.619        | 26.796 | 30.062 | 30.926  | 30.714 | 32.247 | 37.278 | 33.257 | 32.807 | 24.485 | 29.476 | 19.549 |   | 20 |
|       | Е         | 18.728        | 27.746 | 30.064 | 30.403  | 30.019 | 31.346 | 33.313 | 31.395 | 31.226 | 31.539 | 29.188 | 20.534 |   |    |
|       | D         | 19.280        | 28.537 | 29.976 | 29.255  | 30.157 | 30.876 | 32.397 | 30.587 | 32.128 | 32.234 | 31.451 | 20.621 | - | 20 |
|       | с         | 19.886        | 30.597 | 32.138 | 31.719  | 32.344 | 33.296 | 33.484 | 33.180 | 32.709 | 32.496 | 31.207 | 19.402 |   |    |
|       | в         | 18.901        | 22.853 | 31.994 | 32.637  | 34.072 | 33.427 | 31.465 | 32.574 | 32.132 | 32.389 | 31.560 | 18.787 | _ | 15 |
|       | А         | 14.917        | 20.033 | 21.582 | 22.359  | 21.501 | 21.441 | 21.850 | 22.607 | 22.138 | 21.681 | 21.855 | 16.347 |   |    |
|       |           | А             | в      | С      | D       | Е      | F      | G      | н      | I      | J      | к      | L      |   |    |
|       |           |               |        | 41     |         | . 4    |        |        |        |        | 1      |        |        |   |    |
| F     |           | Concession of | -      |        | 8       |        | -      |        |        |        | 1      |        |        |   |    |
| 1     |           |               |        |        | Glu     |        |        |        |        |        |        | +TiO2  |        |   |    |
| 1     | Older HOZ |               |        |        |         |        |        |        |        |        |        |        |        |   |    |
|       |           |               |        |        |         |        |        |        |        |        | C      | ( ,    |        |   |    |
|       |           | -             |        | -      | -       |        |        |        |        |        | -      |        |        |   |    |
|       |           |               |        |        |         |        |        | -      |        | 3      |        |        |        |   |    |
| Refle | eC.       | tive          | e fo   | oil    | Varnish |        |        |        |        |        |        |        |        |   |    |

### Edge Channels



- Uniformity map: For each quadrant, plot LY/<LY in central channels>
- Average ratio of 44 edge channels: 0.67->0.84
- Not yet perfect, but already >15% improvements
  - More studies ongoing

#### Test Beams

- 3 test beams at DESY II: 2019 with MT4 and 2020 with MT6
- Electron beam at 3 GeV
- Megatile layer (MT), 2 single tile layers, beam telescope in front





#### Cross Talk

- Light escaping central cell through airgap  $\Rightarrow$  CT depends on air gap XTE
- CT = energy in neighbour channel / energy central channel



3mm

1. Central channel of MT defined by coincidence in single tile layers





25.03.2021



- 1. Central channel of MT defined by coincidence in single tile layers
- 2. Pe cut on central tile
- Fill not triggered channels with threshold value (3 pe)
- 4.  $CT \le pe$  neighbour channel / pe central channel



## Results of MT4, Cosmic Ray Test Stand

- In Cosmic Ray Test Stand:
  - Very uniform LY and CT in central channels
  - Magnitude as expected



#### MT4: First Attempt at Test Beam (2019)

- Values at center of Megatile of expected magnitude
- Not uniform compared to Cosmic Ray Test Stand
- Anticorrelation between LY and CT



#### MT4: First Attempt at Test Beam (2019)

- Numbers in center of expected magnitude
- Not uniform compared to Cosmic Ray Test Stand
- Anticorrelation between LY and CT



#### Foil Bending in Air Stack

- In cosmic ray test stand: MT lying flat, heavy metal plate on top
   Foil
- In TB: MT upright **Optical Trench**  $\Rightarrow$  Foil is bending (Glue +  $TiO_2$ ) Megatile, 3 mm

## Solution: Glue Foil

• Glue foil to Megatile along the trenches ⇒ MT6



#### LY of MT6 at Test Beam (2020)

Quite uniform



LY

#### LY Comparison

Ratio between test beam and cosmic ray test stand results

LY, ratio

• Compatible within 15%

1.2 Lo350 ≻300 1.042 0.958 1.01 1.004 0.938 0.955 0.958 0.973 0.967 0.928 -1.15 0.936 1.013 1.017 0.984 1.023 0.996 0.932 0.925 0.918 0.963 0.954 0.968 0.953 0.96 0.994 0.937 0.99 0.956 0.996 0.95 0.93 0.916 0.952 0.956 1.1 250 0.935 0.916 0.966 0.957 0.988 0.961 0.977 0.922 0.945 0.943 0.965 0.998 - 1.05 0.943 0.935 0.959 0.983 0.924 0.916 0.911 0.963 0.932 0.927 0.986 1.053 200 0.994 0.95 0.962 0.965 0.925 0.933 0.92 0.899 0.976 0.971 0.99 0.941 1 1.007 0.929 0.938 0.977 0.975 0.946 0.952 0.889 0.93 0.939 0.905 0.983 150 0.95 1.068 0.981 0.947 0.964 0.937 0.927 0.906 0.897 0.937 0.932 1.007 0.952 100 0.931 0.948 1.001 1.019 0.923 0.921 0.911 0.89 0.963 0.925 0.95 0.9 0.938 0.928 0.932 0.893 0.933 0.968 0.896 0.912 0.917 0.915 0.922 0.899 50 0.85 0.926 0.993 0.929 0.912 0.907 0.878 0.864 0.879 0.915 0.987 1.019 0.856 0.997 0.963 0.957 0.912 0.949 0.903 0.955 0.95 0.962 0.923 0.978 0.879 0.8 0 50 100 200 250 350 150 300 x position

#### Cross Talk in Cosmic Ray Test Stand, MT6

- Similar to MT4
- Cross talk for TB: work in progress



#### СТ

#### **Ageing Studies**

• Optical stability of trenches linked to TiO<sub>2</sub> + glue mixture December 2019 August 2020





- 15% lower LY after 8 month
- Repeat LY measurement periodically (couple month) to spot evolution

#### Ageing Studies

- MT6 seems to be stabilised after August 2020
- No significant effects in MT5 and 7
- Temperature stable within 0.5°C
   ⇒Not the cause
- Most likely explanation: accidental exposure to light during first lockdown
- Further tests ongoing



#### Conclusion

#### **Conclusion:**

- LY values in test beam confirm results from cosmic ray test stand
- LY in edge cells on average 84% of central cells
- Airgap between scintillator and foil under control both at cosmic ray test stand and TB
- Cross talk at acceptable level with cosmic ray
- No unexpected ageing observed

#### Outlook

- Cross talk in 2020 test beam data
- More data available, to be analysed
  - Including uniformity scans with beam telescope
- Ongoing monitoring of ageing

# Thank you for your attention!

# Backup

#### Impact of pe Cut on Cross Talk

