Towards digitization on the SiW ECAL for ILD

Fabricio Jiménez, Vincent Boudry – Laboratoire Leprince-Ringuet (CNRS/IPP) Adrián Irles – IFIC Valencia

CALICE Collaboration Meeting 2021/03/26

Outline

The SiW ECAL prototype – Test Beam

Digitization

Simulated hits

Conversion to MIP

Signal shaping

The prototype

A technological prototype for the Silicon Tungsten (SiW) ECAL is under development. (See slides by Roman Pöschl from Wednesday.)

- Test beam data taken in 2017 (then 7 layers)
- Use this setup to implement Digitization

Test Beam

The 2017 setup: three configurations with varying amounts of W in front of each slab,

- Configuration 1: 0.6, 1.2, 1.8, 2.4, 3.6, 4.8 and 6.6 X₀,
- Configuration 2: 1.2, 1.8, 2.4, 3.6, 4.8, 6.6 and 8.4 X₀,
- Configuration 3: 1.8, 2.4, 3.6, 4.8, 6.6, 8.4 and 10.2 X₀.

Positron beams of 1, 2, 3, 4, 5 and 5.8 GeV.

A study of this data demands a comparison with simulations, that include digitization effects

Simulations

- Simulation code of this detector prototype with beam tests are in place
 → Daniel Jeans @ cern gitlab, calice_dd4hepTestBeamSim
- We generated samples for the following setups:
 - The 2017 test beam (e⁺) as in previous slides, same for e⁻.
 - No Tungsten (configuration 0) for e⁻ and e⁺ @ 3 GeV, and μ @ 40 GeV.

After this, we need to add digitization effects

Outline

The SiW ECAL prototype – Test Beam

Digitization

Simulated hits

Conversion to MIP

Signal shaping

Digitization

Raw simulation \Rightarrow info. resembling detector output, including readout effects

- Hits: starting point from raw simulation.
- Map energy deposited to MIP scale.
- Simulate pulse shaping in the readout electronics + saturation effects.
- Add smearing: noise term in detector cells/readout.
- Conversion to ADC, time smearing

Skiroc2 readout (from datasheet)

Two signal paths after pre-amp:

- One Fast Shaper
 - \rightarrow Trigger threshold
- Two Slow Shapers
 - \rightarrow Measure energy, time

Calice Week, March 2021 | Fabricio Jiménez (LLR/CNRS)

Outline

The SiW ECAL prototype – Test Beam

Digitization

Simulated hits

Conversion to MIP

Signal shaping

Simulated Raw Hits. Configuration 1, e⁺ @ 1 GeV

Layer 0 (z = 12.3 mm)Layer 1 (z = 27.3 mm)Layer 2 (z = 42.3 mm)2.0 50 50 1.5 0 1.0 0.5 -50 -50-50 -50 Ó 50 -50 Ó 50 -50Ó 50 Laver 3 (z = 57.3 mm)Laver 4 (z = 72.3 mm) Laver 5 (z = 87.3 mm) 2.0 50 50 50 1.5 0 1.0 0.5 -50 -50 -50 -50 Ö 50 -50 Ó 50 -50Ó 50 Longitudinal Layer 6 (z = 147.3 mm)12 50 10 m 0.4 0 hergy 0.2 -5050 -50 Ó 20 40 100 120 140

z position [mm]

Energy map per layer conf1, 1GeV

- Example: 10k events.
- Σ cell energy (all hits in all evts).
- Longitudinal: total e. / layer.
- EM Shower develops in W.
- Conf1: initial part of shower.

More control plots in backup.

Simulated Raw Hits. No Tungsten, μ @ 40 GeV

- Use this as a reference
- 🤞 Have muons in next TB (?)
- Understand longitudinal (>10%) trend

Energy map per layer conf0, 40GeV

Outline

The SiW ECAL prototype – Test Beam

Digitization

Simulated hits

Conversion to MIP

Signal shaping

Cell energy of hits. No Tungsten, positrons and muons

Take cells with >200 hits (out of 10k events) \Rightarrow 100-200 cells \rightarrow fit Landau distribution

Use Landau location (MPV) as reference for calibration.

Conversion to MIP - No Tungsten

Landau localization parameter distribution on cell energy fits (20*10k evts)

- Electrons and positrons @ 3 GeV, muons @ 40 GeV
- Map muons electrons: 0.0882 \rightarrow 0.0888 MeV (\sim 7‰)
- Expected: electrons \sim positrons
- Calibrate with electrons?
- Identify lower energy bump?

Outline

The SiW ECAL prototype – Test Beam

Digitization

Simulated hits

Conversion to MIP

Signal shaping

Subhit timing

Subhit energy for layers (No Tungsten)

Electrons

Preliminary, but we need to understand time dispersion

Calice Week, March 2021 | Fabricio Jiménez (LLR/CNRS)

Subhit timing

Subhit energy for layers electrons

No Tungsten

Tungsten

Delayed hits on layers with Tungsten (6th layer, right plot) $_{\mbox{Calice Week, March 2021 | Fabricio Jiménez (LLR/CNRS)}$

Signal shaping

Shaping by histograms:

- bin \sim time resolution
 - 1 ns ns for FS
 - 5 ns for SS

Multiple hits

- Time slew effect
- Peaking time

(Slide from V. Boudry)

Summary, plans

- Simulations of prototype in place for digitization.
- Further developments in simulations include:
 - Configuration 0: Muons @ 0.4, 4 GeV.
 - Sim settings: lowering interaction threshold, checking physics lists.
 - Including beam profile (atm localized particle gun).
 - Thinking on how to simulate cosmics.
- Preliminary studies on MIP conversion.
- Shaping to be implemented in the near future.
- This framework is being organized to function within Calice Soft.

Backup

Mass stopping power for positive muons (PDG)

Muon minimum ionization occurs at \sim 0.4 GeV

Moliere Radius distribution, e-, all confs with Tungsten

Before digitization (e-, No Tungsten)

This plot: e- 3GeV, without Tungsten

Before digitization (e+, No Tungsten)

Laver 2 (z = 36.03) Laver 1 (z = 23.13) Laver 0 (z = 10.23)6 50 50 50 --50 -50 -50 50 -50 Ó -50 0 50 -50 ò 50 Layer 3 (z =48.93) Laver 4 (z = 59.73) Laver 5 (z = 70.53) 50 50 50 r, -50 -50 -50 50 50 50 -50Ó -50 Ó -50 Ó Longitudinal Layer 6 (z =124.23) • 7.4 in layer 201 ar 50 Energy i 9.9 -50 64 . -50 Ó 50 40 120 20 60 80 100

z position

Energy map per layer conf0, 3GeV

This plot: e+ 3GeV, without Tungsten

Cell energy of hits (e-, conf1)

For each event, take cells with >200 hits, fit Landau distribution (subhit time on right plot)

Here Landau fit not appropriate (?)

Cell energy of hits (e-, no tungsten)

For each event, take cells with >200 hits, fit Landau distribution (subhit time on right plot)

TO-DO: Use langaus for fit

Cell energy of hits (muons, no tungsten)

For each event, take cells with >200 hits, fit Landau distribution (subhit time on right plot)

TO-DO: Use langaus for fit

Compare confs (electrons)

Here using 10k events on each sample (not more on conf0 for consistency).

• (Fix x axis)

Fitting Landau in electrons with W: not a good idea?

AHCAL Digi

Calice Week, March 2021 | Fabricio Jiménez (LLR/CNRS)