26 March 2021

SDHCAL STABILITY STUDIES

D. Boumediene

LPC

AIM OF THE STUDY

- Predict & quantify the stability of the SDHCAL response
- Implement the dependence of the simulation to some parameters (gap width, Temperature, Pressure, Magnetic Field, Gaz mixture, ionising particle type, ...)
 - **Consider amplification effects only:**
 - Variations coming from readout or signal induction not considered
 - Method: Combine avalanche simulation with digitiser

- **1. Avalanche simulation and modeling**
- **2. SDHCAL simulation: Digitizer**
- **3. Results: predicted stability of SDHCAL output**
- 4.2015 Test Beam Data

1- AVALANCHE SIMULATION

INGREDIENT: AMPLIFICATION MODELLING

- > Monte Carle simulation of the avalanche:
 - Follow the evolution of the number of electrons and ions as a function of time and position
 - > Take into account the changes in the magnetic field
- > Simulation account for:
 - > Multiplication and absorption probabilities
 - > Diffusion
 - > Space charge effect: computing the influence of the avalanche on the electric field at each position & time
 - > Induced charge

μ

Parameter		Value
Width	Gap	0.12 cm
	Anode	0.07 cm
	Cathode	0.11 cm
Permitivity	Anode	$7\epsilon_0$
	Cathode	$7\epsilon_0$
Gas Mixture	$C_2H_2F_6$	93%
	SF ₆	2%
	CO_2	5%
Electric Field		57500 Vcm ⁻¹
Temperature		293.15 K
Pressure		1 atm

SIMULATION INPUT & OUTPUTS

- Induced signal (in pC)
- **Efficiency** (fraction of avalanches that survive and whose signal reach the first threshold)

Large charge probability (~ streamer proba.)

RPC SIGNAL VS TEMPERATURE

>	Avalanches induced by 100 GeV muons are simulated at different temperatures	Efficiency [%]
>	$\Delta Q / \Delta T \simeq +0.15 \text{ pC/Degree}$	98
•		90
>	$\Delta \varepsilon / \Delta T \simeq +0.2$ %/Degree	85
·		80
>	$\Delta Q(\Delta T), \Delta \varepsilon(\Delta T)$ are modelled	7

RPC SIGNAL VS PRESSURE

Avalanches induced by 100 GeV muons are simulated at different gas pressures

[%]	1	1	0	E
ancy [1	0	5	
Efficie	1	0	0	_
-		9	5	-
		9	0	
		8	5	_
		8	0	_
		7	5	
		'	0	

RPC SIGNAL VS GAP WIDTH

- Assuming stable HV (⇒ Electric Field changes)
- >
- $\Delta Q / \Delta D \simeq -0.028 \ pC / \mu m$
- \land ΔQ(ΔD), Δε(ΔD) are modelled

RPC SIGNAL VS MAGNETIC FIELD

- Avalanches induced by 100 GeV muons are simulated using different Magnetic Field amplitudes and configurations
- Longitudinal and Transverse
- No sizeable effect was seen

EFFECT OF THE GAS MIXTURE VARIATION

- **Avalanches induced by 100 GeV** muons are simulated using different SF6 fractions (C_{sf6})
- $\Delta Q \simeq -0.22 \text{ pC if } \Delta C_{sf6} : 2.0\% \rightarrow 2.1\%$
- $\land \Delta Q(\Delta C_{sf6}), \Delta \varepsilon(\Delta C_{sf6})$ are modelled
- Variation in CO2 less easy to interpret (secondary avalanches, that appear if CO2 fraction reduced, not modelled)

2-DIGITIZER

SDHCAL DIGITIZER

```
<execute>
 cessor name="MyAIDAProcessor"/>
 cessor name="MySimDigital"/>
 cessor name="MySimDigitalLinkToParticles"/>
 cessor name="MyLCI00utputProcessor"/>
</execute>
<global>
 <parameter name="LCI0InputFiles">
  ../../SDHCALSim/script/pi-_5GeV.slcio
 </parameter>
 <!-- limit the number of processed records (run+evt): -->
 <parameter name="MaxRecordNumber" value="0" />
 <parameter name="SkipNEvents" value="0" />
 <parameter name="SupressCheck" value="false" />
 <parameter name="Verbosity" options="DEBUG0-4,MESSAGE0-4,WARNING0-4,ERROR0-4,SILENT"> MESSAGE /parameter>
 <parameter name="RandomSeed" value="1234567890" />
</global>
       <parameter name="applyIonCorrection" type="bool"> true </pan
       <parameter name="tempVariation" type="float"> 0 </parameter:</pre>
       <parameter name="pressVariation" type="float"> 0 </paramete</pre>
       <parameter name="widthVariation" type="float"> -1 </parameter</pre>
       <parameter name="widthVariations" type="FloatVec"> 48 16 12
10 45 5 18 34 43 40 38 0 14 5 28 48 15 </parameter>
```

(Use of N initial electrons), ΔT , ΔP , ΔD , ΔC_{sf6} Parameters of the digitiser

Full simulation function of different parameters, from Geant 4 to final detector output: hits

D. Boumediene | 26/03/2021

<marlin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://ilcsoft.desy.de/marlin/marlin.xsd">

ramete	r>																											
>																												
~>																												
-																												
er>																												
33 15	32	8 2	2 37	44	39	7	38	40	42	4	34	29	27	29	30	9	48	23	45	49	5	8	46	18	0	21	30	12

3-RESULTS

GAP WIDTH VARIATIONS: HITS

GAP WIDTH VARIATIONS: ENERGY

Reconstructed energy:

 $E_{\text{reco}} = \alpha(N_{\text{tot}}) \times N_1 + \beta(N_{\text{tot}}) \times N_2 + \gamma(N_{\text{tot}}) \times N_3$

2 scenarios:

- >
- pessimistic: temperature change after the definition of the energy scale (α, β, γ) (a)
- >

optimistic: constant temperature, energy is recalibrated, (α, β, γ) are defined for each situation, the new parameters absorb the variations in number of hits **(b)**

GAP WIDTH VARIATIONS: ENERGY

 (α,β,γ) optimisation restore the linearity with some resolution loss in the case of a temperature decrease

DETECTOR BASED CORRECTIONS

- Assumed stable HV. In many runs online corrections used.
 - HV was rescaled following T/P:
 - $HV(T,P) = (P/T) HV_{nom}(T_{nom}/P_{nom})$
- Dedicated simulation where T was varied and HV was varied as 1/T
 - **Rescaling HV as 1/T absorbs most of the temperature effect**
 - Tends to overcorrect: +0.15pC/Degree (no correction) → -0.05pC/Degree (HV correction)
- Temperature effect is divided by ~3 when detector based corrections are applied

GAP WIDTH VARIATIONS: HITS

Events simulated with 2 geometries

2 déformations:

- +10µm (homogeneous)
- ±100µm (smearing following a flat distribution): models an intrinsic nonuniformity with a tolerance of 50µm from each side of the chambre

nominal

+10µm

nominal

 $\pm 100 \mu m$

GAP WIDTH VARIATIONS: HITS

Events simulated with 2 geometries

2 déformations:

+10µm (homogeneous)

 ±100µm (smearing following a flat distribution): models an intrinsic nonuniformity with a tolerance of 50µm from each side of the chambre

Number of Hits vary by: 4% (Total), 8%(2nd thr.) and 12% (3rd thr.) for +10μm

GAP WIDTH VARIATIONS: ENERGY

- pessimistic: deformation of the gap after the definition of the energy scale (α, β, γ) (a)
- optimistic: frozen deformation, energy is recalibrated, (α, β, γ) are defined for each situation, the new parameters absorb the variations in number of hits (b)

GAP WIDTH VARIATIONS: ENERGY

D. Boumediene | 26/03/2021

(α,β,γ) optimisation restore the linearity with some resolution loss in the case of a gap width smearing

SIMULATION SUMMARY

		$\Delta Q/Q$ [%]	$\Delta N_{\rm tot}/N_{\rm tot}$ [%]	$\Delta N_2/N_2$ [%]	$\Delta N_3/N_3$ [%]	Energy Bias [%]
Gap	+10 µm	-7.2 ± 0.3	-3.5 ± 0.2	-8.0 ± 0.3	-12.3 ± 0.5	-8.6 ± 0.5
	$\pm 100 \ \mu m$		-7.9 ± 0.2	-13.7 ± 1.8	-19.2 ± 0.2	-6.9 ± 0.2
Т	+1° C	4.1 ± 0.4	1.9 ± 0.2	4.3 ± 0.4	7.5 ± 0.7	4.2 ± 1.1
Р	+1 mbar	-1.09 ± 0.11	-0.5 ± 0.1	-1.2 ± 0.2	-1.9 ± 0.2	-1.17 ± 0.13

variations are compensated (eg. HV versus T/P)

Predicts a detector response stability

D. Boumediene | 26/03/2021

40 GeV pions

Energy bias in the pessimistic scenario

> Simulation outputs depend on data taking conditions: assume the detector stable, or that

4-TEST BEAM DATA

SLOW CONTROL DATA

- Slow control data extracted and associated to each TB event
- Day/Night variations in Temperature observed despite cooling
- In many runs HV was rescaled following adapted to T/P
- Selected a 48 period where HV was not changed

IN RUN STABILITY

- **Runs tased at different energies** cannot be compared
- **Analysing Nhits versus T and P in** individual runs
- **Different trends observed, some in** contradiction
- other sources of variation in the runs (beam intensity variation + saturations?)

Data/Monte Carlo comparison

Producing two simulations:

Simulation with constant Q

Simulation where for each run the observed ΔT , ΔP are injected

DATA/SIMULATION

Producing two simulations:

DATA/SIMULATION

SUMMARY

- **Full simulation used to predict detector stability**
- At Digitial level (inclusive hits) detector is rather stable: typically at < 5% level
- Semi-digital information (thresholds) more sensitive to the various effects, typically 10% level
 - can be partially compensated at detector level or software level
- **Based on data, other sources of instabilities in beam tests (saturations, readout, etc)**

WORK DOCUMENTED

Description and stability of a RPC-based calorimeter in

a electromagnetic and hadronic shower environements

D. Boumediene et al.

- 5 CNRS/IN2P3/LPC Université Clermont-Auvergne,
- 6 4 avenue Blaise Pascal, 63178 Aubière, France

7 E-mail: djamel.boumediene@cern.ch

8 ABSTRACT: The CALICE Semi-Digital Hadron Calorimeter technological prototype that was

⁹ completed in 2011 is a sampling calorimeter using Glass Resistive Plate Chamber detectors as the ¹⁰ active medium. This technology is one of the two options proposed for the hadron calorimeter of ¹¹ the International Large Detector for the International Linear Collider. The prototype was exposed ¹² in 2015 to beams of muons, electrons and pions of different energies at the CERN Super Proton ¹³ Synchrotron.

The use of this technology for future experiments requires a reliable simulation of its response that can predict its stability. The prototype is simulated using GEANT4 and a custom digitisation algorithm. It describes the full path of the signal: showering, gas avalanches, charge induction and hit triggering. The simulation was tuned using muon tracks and electromagnetic showers in order to account for detector inhomogeneity and tested on hadronic showers collected in test beam. Initial digitisation algorithm was described in JINST 11 (2016) 6 P06014. Further developments of the algorithm are described and used to predict the stability of the detector performances against various changes in the data taking conditions like temperature, magnetic field, gap width variations, etc. These predictions are confronted with test beam data and provide an attempt to explain some of the detector behaviors. The detector efficiency is found to be rather stable regarding to data taking conditions like temperature and potential detector inhomogeneities while the density measurements

25 are more affected.

26	Co	onten	ts		
27	1	Intro	oductio	n	1
28	2	The	SDHC	AL Prototype at CERN SPS beam test	2
29	3	Mod	eling of	f the detector response to particles	4
30		3.1	Simula	ation of SDHCAL prototype	4
31		3.2	Simula	ation of particle interactions with Geant4	4
32		3.3	Full di	gitization	4
33		3.4	Simula	ation of the avalanches	5
34			3.4.1	Primary ionization	5
35			3.4.2	Electronic avalanche	5
36			3.4.3	Simulation output	6
37	4	Pred	licted S	tability of the SDHCAL Prototype Response	7
38		4.1	Univer	rsality of the MIP based calibration	7
39		4.2	Impact	t of the mechanical homogeneity	12
40		4.3	Impact	t of the temperature and pressure	18
41		4.4	Impact	t of a magnetic field	27
42		4.5	Impact	t of Gas mixture instabilities	28
43		4.6	Summ	ary	28
44	5	Com	parisor	n with Beam Test Data	29
45	6	Con	clusion		31

AVALANCHE SIMULATION

- > Monte Carle simulation of the avalanche:
 - Follow the evolution of the number of electrons and ions as a function of time and position
 - Take into account the changes in the magnetic field
- > Simulation account for:
 - > Multiplication and absorption probabilities from Magboltz
 - > Diffusion
 - > Space charge effect
 - > Induced charge

ADDING DEPENDENCE TO THE ENERGY DEPOSIT

Total induced charge [pC] 2.5

0.5

DEPENDENCE TO ENERGY DEPOSIT

- **Difference between using a** constant Polya (independent from energy deposit in the gas) and a **Polya that is rescaled as a function** of energy deposit
- **Affects mainly 3rd threshold (3%** for 30 GeV electrons, 5% for 40 **GeV** pions)
- In the following, dependence is kept by default

Trends in Large Charge Probability give an indication about streamers

PARAMÈTRES VS TEMPERATURE

multiplication (+12%) Absorption (-14%) Diffusion longit. (+5%) Diffusion transv. (+2%) Velocity (+4%)

- **Analysing Nhits versus T and P in** individual runs
- **Different trends observed, some in** contradiction
- other sources of variation in the runs (beam intensity variation + saturations?)

FIX: DIVERGENCES VERSUS TEMPERATURE

old version

> old version : only a small event fraction of the events was used ⇒ tend to reject events with many charges ⇒ biased subsample was used
 > Now fixed

D. Boumediene | 26/03/2021

new version
