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The need for sophisticated hadron shower clustering.

> Future linear collider required to

distinguish hadronic decays of W and Z %1400 : a)l B 195 GeV
bosons; O1200F wiz= ]
) [
> Pandora Particle Flow is current %1000 - 3
state-of-the-art for W-Z jet energy 2 -
resolution (05 /E = 3.8%); 800 7
> Pandora PFA [4] relies upon sophisticated 600 - 7]
clustering for particle showers in highly 400 - E
granular calorimeters. s
. o . . 200 |- { .
> Machine Learning is a rapidly developing s &
science, with many state-of-the-art [ e
applications in clustering. 60 80 100 120

M,/GeV
> Can machine learning be used to aid in
PFA clustering?
Reconstructed invariant mass distributions for
> Does a calorimeter with temporal the hadronic system in simulated
information aid in clustering? 27 — ddvo and WTW = — udp~ v [4]
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'M.A. Thomson. “Particle flow calorimetry and the PandoraPFA algorithm”. In: (2009).
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Goals

Predict the fraction of energy belonging to two simultaneous
hadronic showers observed in a highly granular calorimeter
prototype, cell by cell, using existing state-of-the art machine
learning methods.
> State of the art machine learning uses graph networks to achieve
separation.
> Several options for neural shower separation:

> Standard Convolutional Neutral Network;
> Dynamic Graph Convolutional Neutral Network (DGCNN)!
> GravNet? ;

> |s time a useful variable for hadronic shower clustering?
> What is the effect of time resolution on network performance?

Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. 2018. arXiv:
1801.07829.

?Shah Rukh et al Qasim. “Learning representations of irregular particle-detector
segmetry with distance-weighted graph networks”. In: (2019). ISSN: 1434-6052.
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https://arxiv.org/abs/1801.07829

CALICE AHCAL Design

Detector Statistics:

Dimensions: 72 cm X
72 cm X 75 cm
Sampling
Calorimeter: 3mm
Absorber: 17mm,
steel

Utilizes SiPM-on-Tile
Technology.

Depth: ~ 4 )| over
38 Layers

Cell Dimensions:
3 x 3cm? ;

Total Channels:
21,888.
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Why we measure time

Electromagnetic
Shower
t ~ Instantaneous

Hadron Production/

> Hadron showers involve many - = = = Intranuclear Cascade

different energy-deposition
processes. H

Pion Decay
> EM fraction near !

instantaneous;
> Hadronic fraction slower;

t~10%-10"s

Neutron Elastic

> Late time development TE-10%s

\

1
| S

1

correlated with hadronic fraction. :
> Shower development of an i i
EM-process dominated shower ¢ ~ Instantancous £~107%0-107s

completely different to

Neutron Capture

t>107%s

hadronic-process dominated. LT T T Lt L% 5 s =5 &L LL
> Does this help clustering? t[s]
Minimum Hadron Neutron Capture
Tonisation Production/ Neutron Elastic
E Pion Decay
Shower Cascade
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Simulation Information: Summary

Simulation of 7~ hadronic showers
using Geant4 in the AHCAL were used:

> Physics list: QGSB_BERT_HP

Combined Showers
®  Esum = 98.909 GeV

> full detector simulation (inc. SiPM
saturation/noise thresholds etc.)

> Based on June 2018 CALICE
Testbeam taken at SPS;

Energy [MIF]

> Actual data also used to
validate;

> Simulated particle energies:
10-80 GeV in steps of 5 GeV

+ 90 GeV, 120 GeV Example event display of a 80 GeV
~ No neutral data: this must negative pion detected by the AHCAL

currently be spoofed.

CAI.l@
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Simulation: Multi-shower Augmentation Algorithm

Kiit < Kepowerstart
E,, < 3MIP
= y @: 200ns > Ry < 3cells
mm@l X

2. Displace events in
acircle of a given radius 3. Apply Containment 4. Apply MIP Cut to emulate

within the calorimeter; & Time Gate Criteria neutral particle;

Exo, cen ¥ “

i oEica \
—>

4. Require atleast YES

% -

1. Choose 2 random
charged pion events;

20% of energy 5. Clalcu!ate energy 6. For shared hits, take earliest
of original shower fractions in each cell; hit time as shared hit time;
to remain;

=

7. Store events
to disk;
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Simulation: Example Combined Shower Event

Charged Shower
o Esum=63.316 GeV

102 102
Neutral Shower
©  Esum=23858GeV
Removed MIP Track
* Esum = 0.729 GeV
— Cut Region
101 10
=
>
<
@
c
w
10° 10°
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The Experiment

> Train a series of shower separation networks, with and
without time as an input variable. using perfect simulated
time resolution;

> Is there an improvement in energy resolution?

> Can it be applied to actual data?

> Obtain samples of hadronic shower pairs with decreasing
time resolution from Ons to 2ns;

> At what resolution does does the improvement in clustering
due to time cease?

UH
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Results: Network Validation on Simulation

CALICE SPS June 2018 Testbeam
Comparison of Clustering Performance
Simulation, With & Without Perfect Timing Information
Spoofed Neutrals

What one learns:

Performance measured
= w/o Time by: difference
W Time between .
true/predicted
shower energies.

IS

3.631

w

Energy resolution
always improves with
time.

N

Improvement around
300 MeV;

MAD(ESum,Pred - ESum,TruE) [GeV]
=

GravNet performs
worst overall on
simulation;

3D ConvNet DGCNN GravNet

MAD(X) = Median (|X; — Median(X)|) D) A E G P T
best overall on

simulation;
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Results: Network Validation on Data - A First Ever Study!

CALICE SPS June 2018 Testbeam
Comparison of Clustering Performance
Simulation vs. Data, Without Perfect Timing Informaion
Spoofed Neutrals

What one learns:

Performance measured
by: difference
between
true/predicted
shower energies.

5
mmm Simulation

W Data

IS

w

Time information in
data not sufficiently
calibrated for
validation on neural
network.

N

iy

Data experiences
around 700 MeV
worse performance
than in simulation.

MAD(ESUm,Pred - ESum,True) [GEV]

3D ConvNet DGCNN GravNet

MAD(X) = Median (| X; — Median(X)|) %) Distributions
available in backup

slides.
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Results:

Network Validation on Data, AE distributions

CALICE SPS June 2018 Testbeam
pred — ETrue
Neutral, DGCNN
Data, Without Timing Information

&=-->
60 GeV
Network

~ symmetric

prediction

g~ ymympp——
120 GeV

Network tends to

underpredict energy

Network tends to

overpredict energy

=20 =15 -10 =5 0 5 10 15 20

|
o

Skew(Esum, pred = Esum, True) [GeV]
|
~

Esum,prea — Esum, True [GEV]

Charged 95% CI 10 A Charged 95% CI
Neutral 95% CI Neutral 95% CI

4 charged Charged

- Neutral Neutral

Skewness. Mean

Mean(Esum, prea = Esum, True) [GeV]

of AE N of AE
decreases ~ =2 | decreases
with energy 3N _4 \with energy
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Beam Energy [GeV] Beam Energy [GeV]
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What one learns:

Algorithm learns
energy range of
hadron shower data.

Over-predicts at the
low-end of energy
range;

Under-predicts at the
high-end of energy
range;




Results: Performance Vs Hit Energy, £},

Network
performance

worse
with low energy
depositions.

Fpred = Frrve

CALI(ed

Fered = Frrue
Simulation, Neutral, DGCNN
Without Timing Information

Network
performance
improves
with high energy
depositions.

Network tends
to misallocate
energy from
neutral to
charged.

25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Enie [MIP]
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What one learns:

Neutral shower
fractions tend to
be
under-predicted.
Performance
improves with hit
energy;




Results: Performance Vs Hit Energy,

Frred, wrime = Frrve, wrime
Fored, wiorime = Frrue,

Simulation, Neutral DGCNN

Fewer slightly What one learns:
miscalculated

hit fractions

well-clustered
hits with time

Time improves
slight deviations
from truth at all
energies;

Time improves
mis-allocated
hits to charged
shower at low
energies.

Fewer hits
allocated to
the charged
shower

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epie [MIP]
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Results: Increasing Time Resolution

What one learns:

Reduction in
performance
degrades well
above desired
operating
resolution of 1
nanosecond.

2.75
2 2.70
=265
2.60
255

2.50

MAD(Epred — Etrue

2.45
1.02
1.00
2 0.98
850.96
0.94
0.92
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CALICE SPS June 2018 Testbeam
Epred — Etrue
Simulation, Neutral, DGCNN

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
tres [Ns]

. Expected Operating

Time Resolution
Without Time, 95% CI
With Time, 95% CI
Without Time

With Time




Conclusion

\

CAI.l@

An efficient multi-shower data augmentation tool was
developed;

Small improvement in clustering performance of around 300
MeV was observed using perfect time resolution.

Improvement due to time is due to minor error-correction and
correctly otherwise misallocated hits

Networks can be applied to data, but perform with 700 MeV
worse resolution than simulation;

Improvement due to time is no longer useful after ~ 1.5 ns time

resolution;
UH
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Outline

> Backup
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Network: Underlying Architecture

Data BN Batch Normalization Fully Connected Lay)
2

XX
Point Cloud:  Batch x Vertices x Features | X
DO Dropout

BigBlock:  BatchxFilters x I J xK @ Leaky ReLU I Operation
[/] softmax

@ Concatenation I Input/Output /

Feature
e maton 7] \
T

t;o

Q
Feature Aggregation
Recursive Blocks BN ogregation . By
3 Outputs 5 "+ 1024
H -
] —> N — N —
2
8
1024 x Input ! 1024 x Input 512xiInput 256 x \npﬂ\ 2xInput

PEEEEIN !
[ouputisteato* o o-==-= N
| thonextblock | | Ouputs | { Pooltosingle |
! andsaved | | concatensted | 1 scalarmaximum |
\ steschaiage ] T T et |

1
toongnal sz

1
\

@
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Network: Standard Convolutional Block

Input: BN Batch Normalization o)
Point Cloud: ~ Batch x Filters x | x J x K. [58} Fully Connected Layer
DO Dropout

Leaky ReLU Activation
Operation

|Z] Softmax Activation

D) concatenation
InputiOutput

Convolutional block architecture. Complete network has 991,679 learnable weights
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Network: Dynamic Graph Convolutional Block

Input: x *’(
Point Cloud:  Batch x Vertices x Features | X BN Batch Normalization {55}
Q Fully Connected Layer

DO Dropout
E Leaky ReLU
Operation

! ] softmax

| iterations = 4
' @ Concatenation Input/Output

Edge Conv BN BN
+ +

5
o

N o = max(k)—>
64

Graph Feature

[0 Jda]de]
{40 o]
mmm k=15

GetDistance  Got ket
Neighbours it s

Dynamic Graph Convolutional block architecture. Complete network has 977,024 learnable weights.
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Network: GravNet Block

Input: XX Legend
Point Cloud:  Batch x Vertices x Features |

BN Batch Normalization -
Q2 Fully Connected Layer

DO Dropout
Leaky ReLU
]
| *iterations =3 m Softmax
'
H @ Concatenation

Operation

Input/Output

GravNet Convolutional Block
Featuroset
3 [
i

GravNet Operator

»
E—) y"”
Apply Radial

Basis Function

-]
z

Average
Gravnet &g

a
&

max(k)

Distnce

E =
2

=

GravNet Convolutional block architecture. Complete network has 980,042 learnable weights.
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Results: FE.,,, Reco. Performance (Simulation)

CALICE SPS June 2018 Testbeam CALICE SPS June 2018 Testbeam
rreq — Erue oreq — E,
Comparison of Resolutions With and Without Timing Information, Comparison of Resolutions With and Without Timing Information,
Simulation, Neutral, 3D ConvNet, Neutral Simulation, Neutral, DGCNN, Neutral
0175 wrine 0175 o wire
N300 x 10 N N 5000 x 10
0.150 508, 0.150 N 5088,
0125 T it 0125 f \‘g T kileees
0.100 [ e \ e
worime wo ime
0075 0% 107 0.075 \ N om0 x 100
0.050 e 0.050 . 1
0.025 2057 0.025 \\K AP
0.099 i 0000 ey
15
g Ao P
D LOT | e ’M"W ] W ‘*»Mr"vﬂw‘u‘t{‘
g os
0.0 .
05 166-75-50-35 00 25 50 75 10.0 05 160-75-50-35 00 25 50 75 16.0
Esum,pred = Esum, True [GEV] Esum,pred = Esum, True [GEV]

CALICE SPS June 2018 Testbeam

pred — ETrue
Comparison of Resolutions With and Without Timing Information,
i ion, Neutral, GravNet, Neutral

016 FEC
0.14 %:-0554
0.12 o ‘5: -0.436
0.10 median(x) : -0.156
010
0.6 ¥ s
0.04 0,:9.859
0.02 k1 22,088
L e
020 MADIX) : 3.338
15
g 10
5 os
0.0
-0.5

-10.0-7.5-5.0-2.5 0.0 2.5 50 7.5 10.0
Esum, pred = Esum, True [GeV

L ‘69
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Results: Accuracy Curves

What one learns:

Accuracy always improves
with time.

’Kink” at 15 epochs in loss
curve due to
overcompensating step
function applied to learning
rate due to gradient
explosion;

Still attempting to find
solution.

Training still in progress as a
result.

As above with accuracy, see
backup.

CAu@d

Testing Sample

b
i
HES
K1
E
S o0rs| — Conviet, wioTme
3 Conviet wTime
] 0GENN, o Time
3 070 DGENN, w Time
g —— Grauiet, wio Tme
< = GravNet, w Time.
Fie -
<"
2
B
o
10 15 20 25
Epoch
Testing Sample
_ 090
Z| oss
v
HE
é{éz 0.86
Y| o84
=L 0.82
> — Convet wio Time
3 Comviet wTime
8 080 DGCNN, o Time
H DGENN,wTime
g 078 —— Grautet, wio Tme
< ==~ GravNet, w Time
078
HHEE
i10
< 0.9
2 08
507
0.

20 25
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Results: Loss Curves

Training Sample

— ConuNet, wio Time.
---- ConvNet, w Time

7030
@
=
5025
5
What one learns: goz20
Loss always improves with %015
time. =
_°29
’Kink” at 15 epochs in loss H gié
curve due to 50
overcompensating step g 08
function applied to learning « 8'7
;i ©70 5 10 15 20 25
rate du.e to gradient Epoch
explosion;
Testing Sample
Still attempting to find 022 — Comihet wio Tme
solution. :
= 0.20
Training still in progress as a % o018
result. S
2016
As above with accuracy, see %014
backup. =
013
: 11
EE 10
< o9
2 08
8 07
0675 5 10 15 20 25
Epoch
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Network: Figures of Merit and Hyperparameters

Figures of merit:

> Loss Function:

I— Z > VEitik pir — tir)?

3)

X > i VEiti
M quare error, weighted with the square-root of the

true cell energy.
> Accuracy Function:
E

A NEvents(0~7 < #Ted < 1~3) @)

— rue

NEvents

Ratio of number of charged particles with 70%-130% of
their true, reconstructed energy predicted to all charged
particle

E — Ground Truth Energy [MIP];

t — Ground Truth Energy Fraction;
p — Predicted Energy Fraction;

i — Cell Energy Index;

k —— Shower Index;

Hyperparameter (machine learning). In: Wikipedia. Page Version ID: 984957886. Oct. 23,

CALl@- (Visited on 01/18/2021).
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Hyperparameters:

In machine learning, a hyperparameter is a parameter whose
value is used to control the learning process. By contrast, the
values of other parameters (typically node weights) are
derived via training. [2]

All figures of merit and choice of hyperparameters used
were defined in the reference paper [3].

> Batch Size: 20 events

> Total Nepochs: 20

> Training Size: 2 X 10° Events

> Test Size: 2 x 10 Events (10 % of Training Size)

> Validation Size: 5 x 10% Events (25 % of
Training Size)

> Optimizer: ADAM

> Learning Rate: 3 — 1 X 1074, varies by
network

> Scheduler: Exponential Decay, Factor = 0.99
+ Step Function if Training Loss Increases, Factor
=075

> GPU: Nvidia P100




Results: Performance Vs Hit Radius, Ry

What one learns:

Neutral shower fractions . Fered = Frrue

tend to b d ] Simulation, Neutral, DGCNN

€nd to be under-predicted. Without Timing Information 1

Over-prediction close to the : 10 N 1083 x 107

shower core. -

Performance worsens : >; g.;s;szs

slightly with distance from 51517

the hadron shower core; ! k12,521
median(x) : 2.299
MAD(x) : 1.725

median(y) : -0.035
MAD(y) : 0.039

6 8 10
Rpic [Cells]

CAI.l@
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Results: Performance Vs Hit Time,

Fered, wrime = Frrue, wrime

Fered.wiotime = Frrue, wiotime

Simulation, Neutral, DGCNN

What one learns:

Time improves:
slight deviations from truth
close to shower core;

mis-allocated hits further
from shower core.

onjey

Ry [Cells]
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Results: Increasing Time Resolution

at one learns:

Reduction in performance
degrades well above
theoretical operating
resolution of 1 nanosecond.

Graph networks sensitive to
time resolution

ConvNet result suggests
clustering in only space is
sufficient.

@

BoE e
o N &

MAD(Epred — Etrue) [GeV]

Ratio
=N W s N b o ©

CALICE SPS June 2018 Testbeam
red — ETrue
Neutral, DGCNN
Simulation

o t
- 4

0.75 1.00

tres [Ns]

1.25 175 2.00
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Without Time
With Time




Results: Performance Vs Hit Time,

What one learns:

Neutral shower fractions
tend to be under-predicted.
Interestingly, late hits are
clustered better than earlier
hits - unexpected.

Fered = Frrue
Simulation, Neutral, DGCNN
Without Timing Information

101 ==

10°

107t

1072

1073

10 12
thie [ns]
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N:1.983 x 107

%:5785

0y :5.849
5¢:19.432

ky : 488.698
median(x) : 4.982
MAD(x) : 0.950
y:-0.149

o, : 0239
5,:-1.516

ky :2.561
median(y) : -0.035
MAD(y) : 0.039




Results: Performance Vs Hit Time,

FPred‘ wTime _FTrue‘ wTime

FPred, wfoTime — FTrue‘ wloTime

Simulation, Neutral, DGCNN

What one learns:

Time improves: 0.75
slight deviations from truth
at all energies;
. . 0.50
mis-allocated hits to charged
shower at low energies.
[}
g 0.25
w
I 0.00
T
o
a:
w —-0.25
—0.50
-0.75

8 10 12 14 16 18
thit [ns]
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Detector Observables
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