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The need for sophisticated hadron shower clustering..
> Future linear collider required to

distinguish hadronic decays of W and Z
bosons;

> Pandora Particle Flow is current
state-of-the-art for W -Z jet energy
resolution (σE/E = 3.8%);

> Pandora PFA [4] relies upon sophisticated
clustering for particle showers in highly
granular calorimeters.

> Machine Learning is a rapidly developing
science, with many state-of-the-art
applications in clustering.

> Can machine learning be used to aid in
PFA clustering?

> Does a calorimeter with temporal
information aid in clustering?

Reconstructed invariant mass distributions for
the hadronic system in simulated
ZZ → dd̄νν̄ and W+W− → ud̄µ−ν̄ [4]

1

1M.A. Thomson. “Particle �ow calorimetry and the PandoraPFA algorithm”. In: (2009).

Jack Rolph, Gregor Kasieczka and Erika Garutti | UHH | March 22, 2021 | Page 2



Goals.
Predict the fraction of energy belonging to two simultaneous
hadronic showers observed in a highly granular calorimeter
prototype, cell by cell, using existing state-of-the art machine
learning methods.

> State of the art machine learning uses graph networks to achieve
separation.

> Several options for neural shower separation:
> Standard Convolutional Neutral Network;
> Dynamic Graph Convolutional Neutral Network (DGCNN)1

> GravNet2 ;
> Is time a useful variable for hadronic shower clustering?
> What is the e�ect of time resolution on network performance?

1Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. 2018. arXiv:
1801.07829.

2Shah Rukh et al Qasim. “Learning representations of irregular particle-detector
geometry with distance-weighted graph networks”. In: (2019). ISSN: 1434-6052.
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CALICE AHCAL Design.

Detector Statistics:

> Dimensions: 72 cm ×
72 cm × 75 cm

> Sampling
Calorimeter: 3mm

> Absorber: 17mm,
steel

> Utilizes SiPM-on-Tile
Technology.

> Depth: ∼ 4 λI over
38 Layers

> Cell Dimensions:
3× 3cm2 ;

> Total Channels:
21,888.
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Why we measure time.

> Hadron showers involve many
di�erent energy-deposition
processes.

> EM fraction near
instantaneous;

> Hadronic fraction slower;

> Late time development
correlated with hadronic fraction.

> Shower development of an
EM-process dominated shower
completely di�erent to
hadronic-process dominated.

> Does this help clustering?
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Simulation Information: Summary.
Simulation of π− hadronic showers
using Geant4 in the AHCAL were used:

> Physics list: QGSB_BERT_HP

> full detector simulation (inc. SiPM
saturation/noise thresholds etc.)

> Based on June 2018 CALICE
Testbeam taken at SPS;

> Actual data also used to
validate;

> Simulated particle energies:
10-80 GeV in steps of 5 GeV
+ 90 GeV, 120 GeV

> No neutral data; this must
currently be spoofed.

Example event display of a 80 GeV
negative pion detected by the AHCAL
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Simulation: Multi-shower Augmentation Algorithm.
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Simulation: Example Combined Shower Event.
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The Experiment.

> Train a series of shower separation networks, with and
without time as an input variable. using perfect simulated
time resolution;

> Is there an improvement in energy resolution?

> Can it be applied to actual data?

> Obtain samples of hadronic shower pairs with decreasing
time resolution from 0ns to 2ns;

> At what resolution does does the improvement in clustering
due to time cease?
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Results: Network Validation on Simulation.

MAD(X) = Median (|Xi −Median(X)|) (1)

What one learns:

> Performance measured
by: di�erence
between
true/predicted
shower energies.

> Energy resolution
always improves with
time.

> Improvement around
300 MeV;

> GravNet performs
worst overall on
simulation;

> 3D ConvNet performs
best overall on
simulation;
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Results: Network Validation on Data - A First Ever Study!.

MAD(X) = Median (|Xi −Median(X)|) (2)

What one learns:

> Performance measured
by: di�erence
between
true/predicted
shower energies.

> Time information in
data not su�ciently
calibrated for
validation on neural
network.

> Data experiences
around 700 MeV
worse performance
than in simulation.

> Distributions
available in backup
slides.
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Results: Network Validation on Data, ∆E distributions.

What one learns:

> Algorithm learns
energy range of
hadron shower data.

> Over-predicts at the
low-end of energy
range;

> Under-predicts at the
high-end of energy
range;
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Results: Performance Vs Hit Energy, Ehit.

What one learns:

> Neutral shower
fractions tend to
be
under-predicted.

> Performance
improves with hit
energy;
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Results: Performance Vs Hit Energy, Ehit.

What one learns:

> Time improves
slight deviations
from truth at all
energies;

> Time improves
mis-allocated
hits to charged
shower at low
energies.
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Results: Increasing Time Resolution.

What one learns:
> Reduction in

performance
degrades well
above desired
operating
resolution of 1
nanosecond.
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Conclusion.

> An e�cient multi-shower data augmentation tool was
developed;

> Small improvement in clustering performance of around 300
MeV was observed using perfect time resolution.

> Improvement due to time is due to minor error-correction and
correctly otherwise misallocated hits

> Networks can be applied to data, but perform with 700 MeV
worse resolution than simulation;

> Improvement due to time is no longer useful after ∼ 1.5 ns time
resolution;
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Outline.

> Backup
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Network: Underlying Architecture.
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Network: Standard Convolutional Block.

Convolutional block architecture. Complete network has 991,679 learnable weights
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Network: Dynamic Graph Convolutional Block.

Dynamic Graph Convolutional block architecture. Complete network has 977,024 learnable weights.
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Network: GravNet Block.

GravNet Convolutional block architecture. Complete network has 980,042 learnable weights.
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Results: Esum Reco. Performance (Simulation).

Jack Rolph, Gregor Kasieczka and Erika Garutti | UHH | March 22, 2021 | Page 22



Results: Accuracy Curves.

What one learns:
> Accuracy always improves

with time.

> ’Kink’ at 15 epochs in loss
curve due to
overcompensating step
function applied to learning
rate due to gradient
explosion;

> Still attempting to �nd
solution.

> Training still in progress as a
result.

> As above with accuracy, see
backup.
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Results: Loss Curves.

What one learns:
> Loss always improves with

time.

> ’Kink’ at 15 epochs in loss
curve due to
overcompensating step
function applied to learning
rate due to gradient
explosion;

> Still attempting to �nd
solution.

> Training still in progress as a
result.

> As above with accuracy, see
backup.
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Network: Figures of Merit and Hyperparameters.
Figures of merit:

> Loss Function:

L =
∑
k

∑
i

√
Eitik (pik − tik)2∑

i

√
Eitik

(3)

Mean-square error, weighted with the square-root of the
true cell energy.

> Accuracy Function:

A =
NEvents(0.7 <

Epred

Etrue
≤ 1.3)

NEvents
(4)

Ratio of number of charged particles with 70%-130% of
their true, reconstructed energy predicted to all charged

particle

E −→ Ground Truth Energy [MIP];
t −→ Ground Truth Energy Fraction;
p −→ Predicted Energy Fraction;
i −→ Cell Energy Index;
k −→ Shower Index;

Hyperparameters:
In machine learning, a hyperparameter is a parameter whose
value is used to control the learning process. By contrast, the

values of other parameters (typically node weights) are
derived via training. [2]

All �gures of merit and choice of hyperparameters used
were de�ned in the reference paper [3].

> Batch Size: 20 events

> Total Nepochs : 20

> Training Size: 2× 105 Events

> Test Size: 2× 104 Events (10 % of Training Size)

> Validation Size: 5× 104 Events (25 % of
Training Size)

> Optimizer: ADAM

> Learning Rate: 3− 1× 10−4 , varies by
network

> Scheduler: Exponential Decay, Factor = 0.99
+ Step Function if Training Loss Increases, Factor
= 0.75

> GPU: Nvidia P100

1
1Hyperparameter (machine learning). In: Wikipedia. Page Version ID: 984957886. Oct. 23,

2020. (Visited on 01/18/2021).
Jack Rolph, Gregor Kasieczka and Erika Garutti | UHH | March 22, 2021 | Page 25



Results: Performance Vs Hit Radius, R̄hit.

What one learns:
> Neutral shower fractions

tend to be under-predicted.
> Over-prediction close to the

shower core.
> Performance worsens

slightly with distance from
the hadron shower core;
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Results: Performance Vs Hit Time, t̄hit.

What one learns:

Time improves:

> slight deviations from truth
close to shower core;

> mis-allocated hits further
from shower core.
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Results: Increasing Time Resolution.

What one learns:
> Reduction in performance

degrades well above
theoretical operating
resolution of 1 nanosecond.

> Graph networks sensitive to
time resolution

> ConvNet result suggests
clustering in only space is
su�cient.
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Results: Performance Vs Hit Time, t̄hit.

What one learns:
> Neutral shower fractions

tend to be under-predicted.
> Interestingly, late hits are

clustered better than earlier
hits - unexpected.
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Results: Performance Vs Hit Time, t̄hit.

What one learns:

Time improves:

> slight deviations from truth
at all energies;

> mis-allocated hits to charged
shower at low energies.
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Detector Observables.
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