


## Cavities and cryomodule update

E. Cenni CEA-IRFU

L. Monaco INFN-LASA S. Stapnes CERN









- Overview of cavities and cryomodules activities/scope
- Recent update

## Cavities and cryomodule group activities and scope



| Year | Activities                                                                                                                                                            |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | 3 single cells manufacturing (material+mech)     3 surface preparations     10 vertical tests     CM design and HPGS     Surface treatments analysis                  |  |  |  |
| 2    | <ul> <li>2 9-cells cavity manufacturing (material+mech)</li> <li>2 surface treatments</li> <li>2 retreatments</li> <li>5 vertical tests</li> <li>CM design</li> </ul> |  |  |  |
| 3    | 2 9-cells cavity manufacturing (material+mech)     2 surface treatments     1 retreatment     4 vertical tests                                                        |  |  |  |
| 4    | 4 9-cells cavity manufacturing (material+mech)     4 surface treatments     1 retreatment     6 vertical tests     Cavity production yield statistics                 |  |  |  |

To this day the collaboration around cavities and cryomodules has two main scopes:

- 1. Demonstrate a robust and reliable industrialization process for cavities fabrication
- 2. Assemble a high-performance cryomodule in Japan

Main milestones (first 2 years):

- Define and validate a cavity preparation recipe (2 single cells *not 3*)
- Manufacture cavities in EU that are compliant with HPGS (Japan gas safety law)

- KEK plans to send base material for cavity fabrication (Nb, NbTi, and Ti) and funding (cash) for at least 2 years
- Nb material will be half fine grain (FG) and half medium grain (MG), the latter is a new material that needs to be validated concerning mechanical and RF performance



## Cryomodule plan

Cryomodule design will take advantage of EU-XFEL and LCLS2 experience

8 cavities: 6 from JP, 1 from the EU, and 1 from the US

All cavities in the CM shall fulfill Japanese High Pressure Gas Safety regulations (we will start a detailed discussion this summer with EAJADE support)

The cavities yield should be >90%

Required performance (from TDR)

| Dhasa         | Operation               |                 | Maximum                 |                                    |
|---------------|-------------------------|-----------------|-------------------------|------------------------------------|
| Phase         | E <sub>acc</sub> [MV/m] | $Q_0 [10^{10}]$ | E <sub>acc</sub> [MV/m] | Q <sub>0</sub> [10 <sup>10</sup> ] |
| Vertical test | 31.5                    | >1.0            | 35                      | >0.8                               |
| Cryomodule    | 31.5                    | >1.0            |                         |                                    |

