

GENERALITAT VALENCIANA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ILC main linac splitable quadrupole magnet and cold cavity BPM R&D

N. Fuster-Martínez

On behalf of the IFIC and CIEMAT teams

05-07-2023

European ILC meeting – ITN session

N. Fuster Martínez

ILC cryomodule

SRF string for beam acceleration.

Thanks to Ó. Durán, L. García-Tabarés, F. Toral (CIEMAT)

- A SC quadrupole (SCQ) package is placed at the center of the cryomodule, type B.
- The SCQ package consists of a main quadrupole magnet combined with dipole corrector and beam-position monitor.
- Two types of magnets located at low energy and high energy sections.
- Dark-Current energy absorption in the SC-coils compromises the operational margin of the superconductor.

ARIMOTO *et al.*: Design Study of a Superconducting Quadrupole Magnet System Sustainable Under Dark Current Heating in ILC Main Linac

Parameters	Unit	Low Energy (5-25 GeV)	High Energy (25-250 GeV)
Dimensions:			
Physical length	m	0.25	1
Magnetic length	m	0.20	0.95
Iron-pole radius	m	0.045	
Quadrupole field:			
Field gradient (G)	T/m	19	40
G-Integral (required)	Т	3.8	38
B _G at pole	Т	0.86	1.8
Dipole field:			
B0	Т	0.05	0.11
B-integral (required)	T•m	0.01	0.10
B max:			
in coil	Т	~1.5	~3

CIEMAT contribution

Present CIEMAT commitment

- Study Nb₃Sn alternative for increasing the temperature margin.
 Tc @3T: NbTi = 7 K ; Nb3Sn = 13 K ; MgB₂ = 15 K
- Design and manufacture of a Nb₃Sn test coil. (MgB₂ option has been discarded).
- Preparation of a cryogenic station for conduction cooling tests using a cryocooler.
- Study of the Nb₃Sn test coil on conduction cooling.
 - Coil performance
 - o Thermal margin
 - Dark currents heat management

Thanks to Ó. Durán, L. García-Tabarés, F. Toral (CIEMAT)

Parameters	Unit	Low Energy (5-25 GeV)
Dimensions:		
Physical length	m	0.25
Magnetic length	m	0.20
Iron-pole radius	m	0.045
Quadrupole field:		
Field gradient (G)	T/m	19
G-Integral (required)	Т	3.8
B _G at pole	Т	0.86
Dipole field:		
B 0	Т	0.05
B-integral (required)	Т·т	0.01
B max:		
in coil	Т	~1.5

Commitment extension under study

 Design and fabrication of a model magnet for ILC low energy type SQC magnet, based on test coil results.

IFIC contribution

Cold-cavity BPM R&D

Improve the last KEK+KNU prototype tested at KEK.

Thanks to H. Hayano

Design based on the re-entrant cavity BPM constructed and tested by the KEK (H. Hayano) and the Korean groups (Si-won Jan et al.).

General requirements:

High precision BPM with a time nanometer resolution (< 369 ns) and a spatial resolution < 1 μm.

dipole mode: 2.04GHz

- ILC beam bunch by bunch measurements (fast readout electronics).
- Low beam dynamics impact (wakefields studies).
- Ultra high-vacuum and cryogenic temperatures performance.
- Special mechanical design for ease cleaning.

IFIC contribution

WP1: Design and optimization studies.

- EM, common mode rejection methods study and beam dynamics.
- Mechanical studies to ease cleaning and ultra-high vacuum performance.
- Cost design studies -> in synergy AVS (Spanish company).

WP2: Integration/alignment with the quadrupole magnet and cryomodule considerations.

• Precise CM-1 BPM attachment method into quadrupole study.

WP3: Development of the readout electronics and data acquisition system.

• Including the position sign data without reference cavity.

WP4: Manufacturing of the prototype (AVS Spanish company).

WP5: Commissioning/tests without beam at IFIC and KEK.

- Calibration, vacuum and cryogenic temperatures tests.
- Installation in a cryomodule within the ILC program.

WP6: Commissioning/tests with beam at ATF/STF.

• Resolution measurements.

3D model by C. Blanch

Thank you very much for your attention