

A Three Higggs Doublet Model with Z3 soft breaking and its probes at future collider experiments

Tetsuo Shindou (Kogakuin University)

D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti, and T.S., arXiv:2203.06323 13. July 2023 IDT-WG3 meeting @online

Extended Higgs sector

- In the SM Higgs sector, there is no principle.
 - How many scalars, what kinds, etc?
 - What's the origin of the EWSB?
 - UV complete picture?

 \bigcirc

• For solving problems in the SM such as DM, m_{μ} , Baryogenesis....., the extended Higgs sector sometimes plays an important role. The extended Higgs sector can be a key to the BSM physics.

Multi doublet model

- From the phenomenological viewpoint, the SM Higgs sector works very well
 - EW precision test $\rho \simeq 1 \implies$ It's violated in an extended Higgs sector e.g. triplet Higgs vev breaks it at the tree level
 - Suppression of dangerous FCNC Suppression on new flavour mixing
- Extension in the Higgs sector tends to cause unpreferred situation
- Multi Higgs doublet models with natural flavour conserving
 - $\rho = 1$ is kept at the tree level
 - FCNC is suppressed by a (discrete) symmetry

Famous 2HDM

- Mass eigen states:
 - Neutral : $\phi_1^0 (\simeq h^0), \phi_2^0 (H^0), \phi_3^0 (A^0)$
 - Charged: H^{\pm}
- Mechanism to suppress FCNC
 - Soft broken Z₂ symmetry
 - Alignment: $Y_{f1} \propto Y_{f2}$
 - Decoupling: $m_{H_i} \gg m_h$

3HDM

One more doublet is added (3 doublets) Φ_1, Φ_2, Φ_3

- Mass eigenstates:
 - 5 Neutral $(h, H_1^0, H_2^0, A_1^0, A_2^0)$ and <u>2 charged (H_1^{\pm}, H_2^{\pm}) </u>

Lighter charged Higgs boson is allowed A. Akeroyd et al. (2018, 2020) The B($B \rightarrow X_{s}\gamma$) constraint is relaxed $\implies m_{H_i^{\pm}} \sim 200 {\rm GeV}$ is allowed

$\begin{cases} A_{\rm CP}(B \to X_{s+d}\gamma) \\ \Delta A_{\rm CP} = \mathscr{A}_{X_s\gamma}^{\pm} - \mathscr{A}_{X_s\gamma}^0 \end{cases}$ new CP sources in the Chaged sector -

A. Akeroyd, S. Moretti, T.S., and M. Song, PRD(2021)

A. Akeroyd et al. Int. J. Mod. Phys (2017)

Correlation between Acp and EDM

Larger mass difference is, both CP asymmetry and edm become larger

and Logan, Moretti, Rojas-Ciofalo, and Song JHEP(2021)

Combined analysis of Akeroyd, Moretti, T.S. and Song Phys.Rev. D(2021) Outside of the black ring is allowed by neutron EDM

 $\tan \beta = 25$, $\tan \gamma = 1$, $m_{H^{\pm}} = 170$, 200 GeV in II, Y, Democratic

Flavour structure in 3HDM

Assumption: Each of u, d, e does not couple to more than one doublet

There are five patterns to suppress the FCNC by some symmetry

 Φ_1 (and Φ_2 in type-I) might be a DM candidate,

unless the inert doublet(s) mix with active one(s).

3HDM with 2 inert doublets

We focus on a 3HDM with symmetry under Z₃ transformation

And we consider the case that only Φ_3 has a vev

Z₃ symmetric potential

$V = V_0 + V_{Z_3}$ $V_0 = \mu_1^2 (\Phi_1^{\dagger} \Phi_1) + \mu_2^2 (\Phi_2^{\dagger} \Phi_2) + \mu_3^2 (\Phi_3^{\dagger} \Phi_3)$ $+\lambda_{11}(\Phi_1^{\dagger}\Phi_1)^2 + \lambda_{22}(\Phi_2^{\dagger}\Phi_2)^2 + \lambda_{33}(\Phi_3^{\dagger}\Phi_3)^2$ $V_{Z_3} = \lambda_1 (\Phi_2^{\dagger} \Phi_1) (\Phi_3^{\dagger} \Phi_1) + \lambda_2 (\Phi_1^{\dagger} \Phi_2) (\Phi_3^{\dagger} \Phi_2) + \lambda_3 (\Phi_1^{\dagger} \Phi_3) (\Phi_2^{\dagger} \Phi_3) + \text{h.c.}$

 \square Even with Z₃ breaking V_{soft} , no mixing between $\Phi_{1,2}$ and Φ_3 is induced $V_{\text{soft}} = -\mu_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \iff Z_3 \text{ breaking only in the inert sector}$

 $+\lambda_{12}(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2) + \lambda_{23}(\Phi_2^{\dagger}\Phi_2)(\Phi_3^{\dagger}\Phi_3) + \lambda_{31}(\Phi_3^{\dagger}\Phi_3)(\Phi_1^{\dagger}\Phi_1)$ $+\lambda_{12}'(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) + \lambda_{23}'(\Phi_2^{\dagger}\Phi_3)(\Phi_3^{\dagger}\Phi_2) + \lambda_{31}'(\Phi_3^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_3)$

$$\Phi_{3} = \begin{pmatrix} w^{+} & & \\ \hline w^{+} & & \\ \hline w^{+} & & \\ \hline \sqrt{2} & & \\ \end{pmatrix} NG \text{ boson}$$

$$\begin{pmatrix} \varphi_{1}^{0} \\ \varphi_{2}^{0} \end{pmatrix} \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix} = \begin{pmatrix} c_{a} & s_{a} \\ -s_{a} & c_{a} \end{pmatrix} \begin{pmatrix} \chi_{1}^{0} \\ \chi_{2}^{0} \end{pmatrix}$$

$$\begin{pmatrix} \varphi_{1}^{+} \\ \varphi_{2}^{+} \end{pmatrix}$$

$$\tan 2\theta_{a} = \frac{\lambda_{3}v^{2} + 2\mu_{12}^{2}}{\mu_{1}^{2} - \Lambda_{1} - \mu_{2}^{2} + \Lambda_{2}}$$

$$\Lambda_{1} = (\lambda_{31} + \lambda_{31}')v^{2}/2$$

$$\Lambda_{2} = (\lambda_{23} + \lambda_{32}')v^{2}/2$$

Dark democracy limit

It is interesting to consider a special case

e:
$$\mu_1^2 = \mu_2^2$$
, $\lambda_{31} = \lambda'_{31}$, $\lambda_{23} = \lambda'_{23}$

V. Keus, S. F. King, S. Moretti and D. Sokolowska, JHEP(2014) ...

$$\lambda_{12}^2 < \lambda_3 v^2$$
)

$$\begin{cases} -\cdots A_1 & H_1 - \cdots A_2 \\ S \propto \cos(\theta_h - \theta_a) \to 0 & \begin{cases} Z & \sin(\theta_h - \theta_a) \\ Z & Z \\ \end{cases}$$

DD constraint can be satisfied even for $m_{H_1} \sim m_{A_1}$

Two components DM!

Hermaphrodite DM scenario

A. Aranda, D. Hernández-Otero, J. Hernández-Sanchez, V. Keus, S. Moretti, D. Rojas-Ciofalo, and T.S., PRD(2021)

Z₃ symmetric case: Both H_1 and A_1 are DM (Two component DM)

Phenomenology in soft breaking Z₃ case

- The hermaphrodite scenario is attractive, but it will be difficult to separate two DM components by collider experiment
- We here consider the case with V_{soft} to introduce mass difference between H_1 and A_1

• Even with
$$V_{\text{soft}}$$
, $\theta_a = -\theta_h = \frac{\pi}{4}$

- can be realised $\Longrightarrow H_1A_1Z$ is highly suppressed $\operatorname{no} A_1 \to H_1 Z^*$ • A_1 decays: $A_1 \to (A_\gamma^*)h \to (Z^*H_1)(\bar{b}b) \to \nu\bar{\nu}\bar{b}bH_1$
- It would be a single-component DM

D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti, and T.S., arXiv:2203.06323

		•
$F = \begin{bmatrix} Z & h \\ M \\$	For γ	$\sqrt{s} = 2500$
$H_1(A_1)$		cross sec
z Z	H_{1}^{0}	0.586p
	A_{1}^{0}	0.027p
e- ee-	m_{l}	$_{H_1} = 53$ Ge
$Z \geq H_1(A_1)$	$m_{_{\! H}}$	$A_1 = 103G$
$Z \stackrel{I}{>}$	$m_{_{I}}$	$_{A_2} = 123G$
e^{+} e^{+} e^{+}	m _l	$_{H_2} = 153$ G
•		

 $A_1 \rightarrow (A_2^*)h \rightarrow (Z^*H_1)(bb) \rightarrow \nu \bar{\nu} bbH_1$ is not considered in the analysis

 $M(\ell^+\ell^-)$ distribution for $e^+e^- \rightarrow \ell^+\ell^- + 2\phi^0$

D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti, and T.S., arXiv:2203.06323

 $M(\ell^+\ell^-)$ distribution for $e^+e^- \rightarrow \ell^+\ell^- + 2\phi^0$

With cuts, $E_T < 120$ GeV and $\Delta R(\ell^+ \ell^-) < 1.4$

D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti, and T.S., arXiv:2203.06323

Summary

- There are several problems, such as neutrino mass, DM,... in the SM
- Many new physics models are proposed, and many of them include extended Higgs sector
- EW precision test and flavour experiments might suggest a multi-doublet structure with natural flavour conserving
- We consider 3HDM as an attractive example
 - In an inert model, we have DM candidates
 - Future e^+e^- collider may be possible to probe the scenario