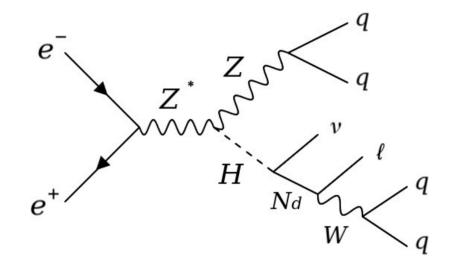

Searching for dark neutrinos through exotic Higgs decays

Simon Hayakawa In collaboration with Masaya Ishino, Junping Tian

International Center for Elementary Particle Physics University of Tokyo

Higgs as probe of BSM

- No signs of BSM yet
- Higgs boson least understood SM particle
 - Might be connected to BSM, e.g., a dark sector
- Precision measurements of Higgs could lead to discoveries

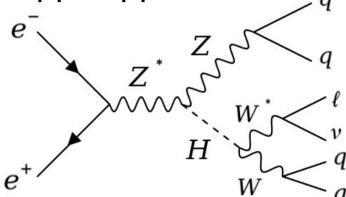

Dark neutrino model

- Dark sector model with SU(2)_D [arXiv:1910.08068]
- CP violation in two Higgs doublet potential
- Dark first-order phase transition results in matter-antimatter asymmetry in dark sector
- Dark neutrinos decay to SM leptons
 - Dark sector CP asymmetry transferred to SM
 - → Matter-antimatter asymmetry
- In this study: $m_Z < m_{Nd} < m_H$

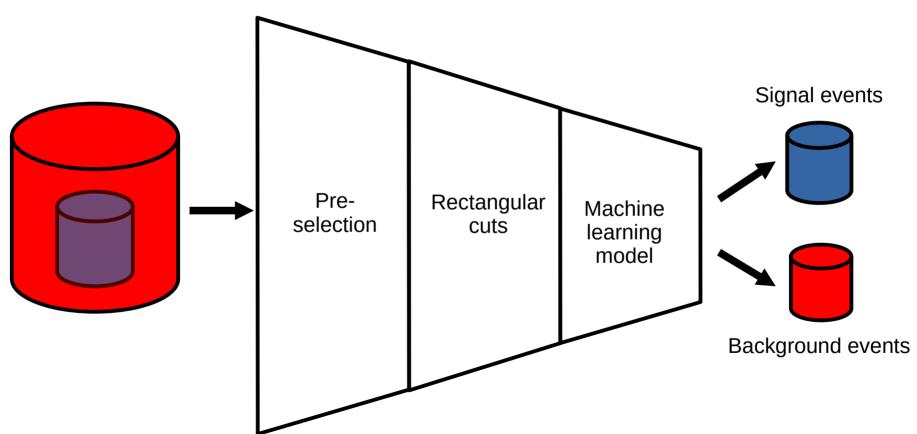
Signal characteristics

- Focus on hadronic decay mode
- Only electron, muon channels

- 4 jets
- 1 isolated lepton
- Missing 4-momentum



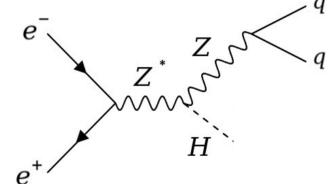
Free parameters: dark neutrino mass, BR(H $\rightarrow \nu N_D$)BR(N $_D \rightarrow IW$)


Backgrounds

- Dominant background: qqH → qq WW* → qq Iv qq
 - Same final state as signal
 - Also includes a W boson

- Other backgrounds:
 - 4 fermion hadronic: leptons from jets can be hard to distinguish from real isolated leptons
 - 4 fermion semileptonic: can be difficult to distinguish between two jets and four jets

Method



Dataset

- Full detector (ILD) simulations
 - Whizard (event generation) → Pythia (parton shower + hadronization)
 - → Geant4 (detector simulation) → Marlin (reconstruction)
- 1000 fb⁻¹ each of beam polarization (-0.8, +0.3), (+0.8, -0.3)
- √s = 250 GeV

Background

- 2, 4, 6 fermion final states, qqh Signal
 - $m_{ND} = 95, 100, 105, 110, 115, 120 \text{ GeV}$
 - ~200 000 events per mass per beam polarization

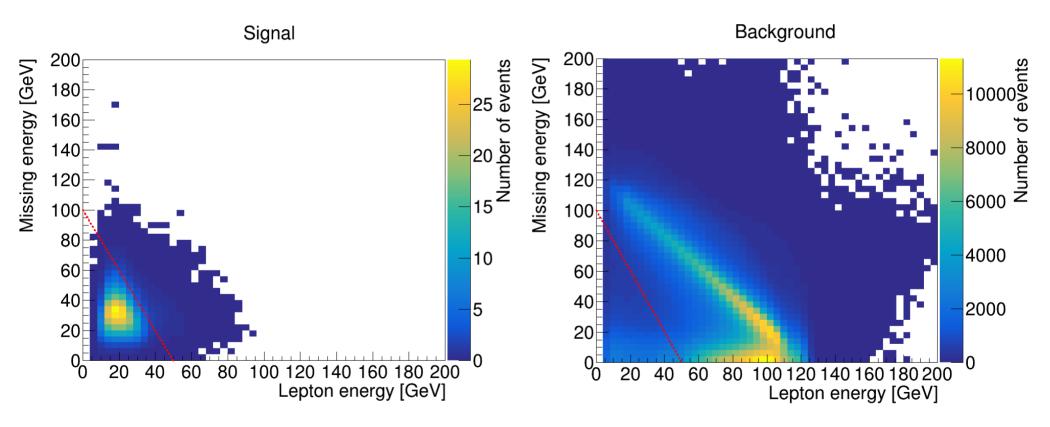
Pre-selection

- Require at least one isolated lepton (neural network)
 - Muon: lepton finder output > 0.7
 - Electron: lepton finder output > 0.5

- Cluster remaining particles to 4 jets with Durham clustering
- Pair jets to Z and W to minimize

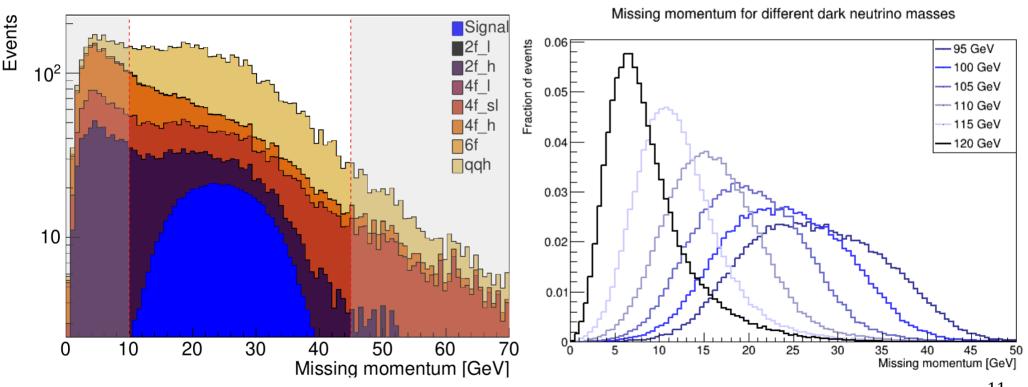
$$\chi^2 = \left(\frac{m_W - m_{12,jet}}{\Delta m_{W,jet}}\right)^2 + \left(\frac{m_Z - m_{34,jet}}{\Delta m_{Z,jet}}\right)^2$$

 Mass resolution calculated by pairing jets based on whether a jet contains the most energy from MC W or MC Z


Rectangular cuts

Optimize cuts separately for each beam polarization, mass

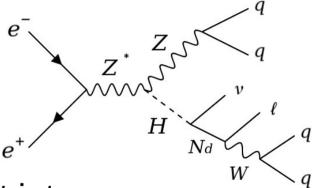
Example (m=100 GeV, (+0.8, -0.3) beam polarization)


- (Lepton energy)/50 + (missing energy)/100 < 1
- Isolated lepton finder output > 0.6
- 160 GeV < 4-jet invariant mass < 220 GeV
- Durham jet distance $y_{4\rightarrow3} > 0.004$ (if jets are more likely from 4 or 3 quarks)
- At least 4 particles in each jet $y_{4 o 3} = \min_{i,j} \left\{ \frac{2 \min\{E_i, E_j\}^2 (1 \cos(\theta_{ij})}{E_{vis}^2} \right\}$
- 10 GeV < Missing momentum < 45 GeV

Lepton/missing energy distribution

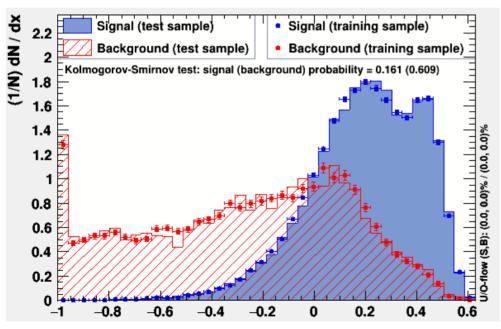
Missing momentum distributions

Differs significantly for different dark neutrino masses


11

Machine learning

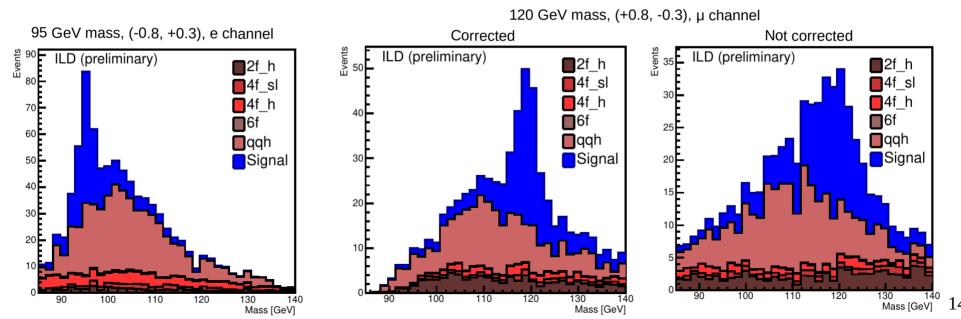
- Boosted decision tree
- Separate BDT for each mass, beam polarization


Input parameters


- Lepton energy, missing energy
- 4-jet combined momentum
- Angle between isolated lepton and closest jet
- Lepton, Missing 4-momentum, Z boson production angle
- Lepton helicity angle in dark neutrino rest frame
- Higgs, Z boson, W boson, dark neutrino invariant mass

Machine learning output

- Confirm that BDT is not overtrained
- Find optimal BDT cut value to maximize significance

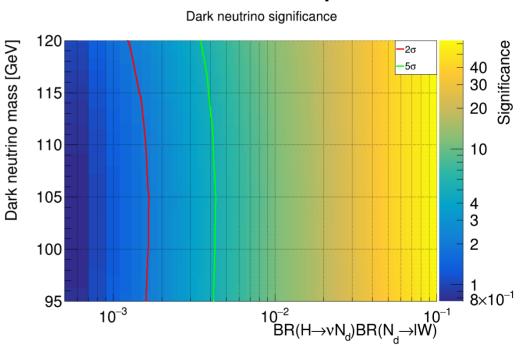


100 GeV dark neutrino mass, (-0.8, +0.3) beam polarization

100 GeV dark neutrino mass, (-0.8, +0.3), e channel

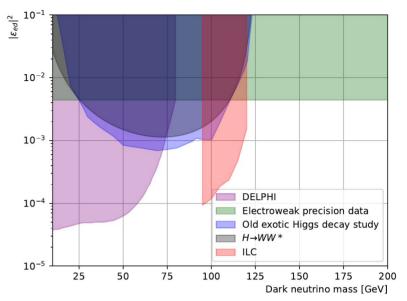
Mass distributions

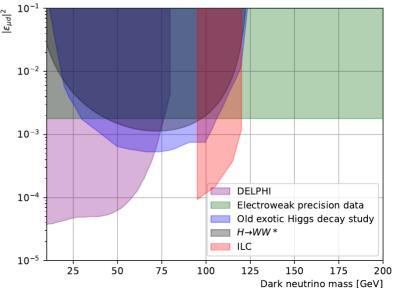
- Corrected mass: m_{ND} − m_W + m_{Wo}
- W boson jet momentum error dominant for dark neutrino reconstruction → error removed in correction



^{*}Dark neutrino mass not used as input to MVA

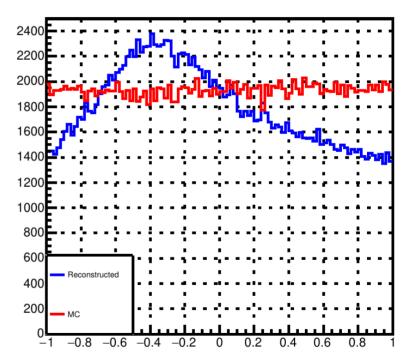
Total significance


- Combined significance of beam polarizations, lepton channels
- Constrain branching ratio (model independent)

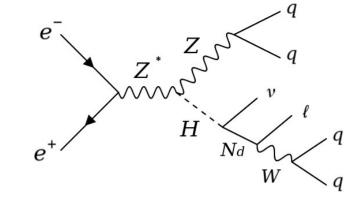

Exclusion plot

Exclusion

- Interpret results for dark neutrino model
- Exclusion improved by factor of 10 (possibly more)



Potential improvements


- Lepton helicity angle in dark neutrino rest frame is incorrectly reconstructed
- Slight increase of negative angles
- Caused by error in jet clustering
 - W and Z jets are mixed
- Improved jet clustering algorithms crucial for future collider experiments

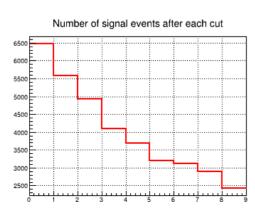
cos(lepton angle in dark neutrino rest frame) | 110 GeV | eR.pL

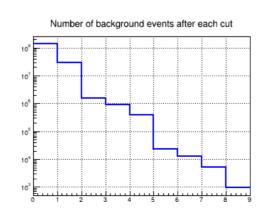
Summary

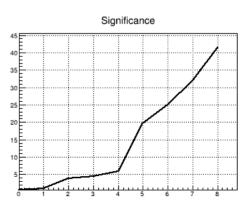
- Study heavy dark neutrino model
 - $m_Z < m_{ND} < m_H$

- Full detector simulation, 250 GeV, 2 beam polarizations
- Rectangular cuts + machine learning
- Constrain BR(H \rightarrow vN_D)BR(N_D \rightarrow IW) > 0.1% at 2 σ
- Discovery possible for branching ratio > 0.3% at 5σ
- Factor of 10 improvement of constraints
- H → WW* measurement at ILC significantly improved
- ILC allows for super-high precision measurements!

Side outcome: H→WW*

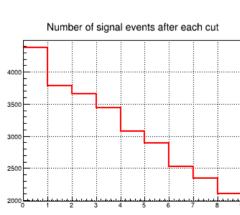

- H → WW* → qq Iv dominant background
- H → WW* interesting to study on its own
 - Key to Higgs total width

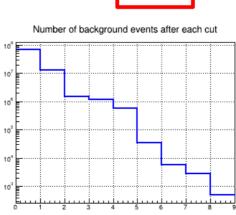


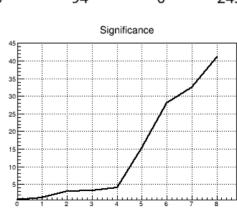

- Only investigate H → WW* → qq Iv decay channel
- Same workflow as dark neutrino analysis
- Dark neutrino-related input parameters to BDT are removed
- No lepton channel separation (yet)

Cut table | (-0.8, +0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	6472	136651487	0.55	12982897	77324421	10379315	19163106	16800470	1278
Pre-selection	5583	30106102	1.02	7366002	1606336	7651845	13260215	220833	872
elep/50. + emis/90. < 1.	4930	1556237	3.95	75113	265900	857303	209602	147613	705
0.8 < mvalep	4101	877321	4.37	54525	41290	623639	138607	18676	585
(180. < mvis) && (mvis < 225.)	3695	386614	5.91	34476	21865	237881	82092	9918	383
0.007 < y34	3201	23318	19.66	160	2109	406	13519	6778	346
2 < min_n	3126	12464	25.04	4	1223	7	4376	6541	314
(10. < mis.P()) && (mis.P() < 50.)	2896	5327	31.93	2	564	4	2207	2449	102
MVA cut	2420	981	41.50	1	73	2	570	304	31







Cut table | (+0.8, -0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	4376	66511092	0.54	10314870	45672588	6114301	2839022	1570051	260
Pre-selection	3778	12547917	1.07	5696748	979693	4109167	1739683	22431	194
elep/60. + emis/100. < 1.	3661	1518141	2.97	99987	189804	1016886	193442	17855	167
0.6 < mvalep	3435	1206227	3.12	88826	62401	890288	159199	5357	156
(160. < mvis) && (mvis < 220.)	3071	559413	4.10	63936	33233	359843	99486	2819	96
0.004 < y34	2896	33799	15.12	565	6575	2378	21820	2369	93
4 < min_n	2527	5638	27.97	0	1775	0	1881	1910	71
(10. < mis.P()) && (mis.P() < 50.)	2344	2852	32.52	0	879	0	1049	902	23
MVA cut	2100	510	41.11	0	94	0	245	162	9

Significance

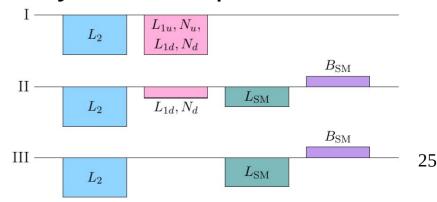
- Combined significance: 58σ
- Previous study of same decay channel at ILC (H. Ono): 36σ
 - Both W* → Iv and W* → qq were used

- Previous study of H \rightarrow WW* significance, with all decay modes: 61σ
- Major improvement of significance compared to previous studies at ILC

Particles in dark sector

- Two Higgs doublets
- Higgs potential:

$$\begin{split} V(\Phi) &= \mu_1^2 \Phi_1^{\dagger} \Phi_1 + \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \mu_3^2 (\Phi_1^{\dagger} \Phi_2 + c.c.) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + c.c. \right]. \end{split}$$

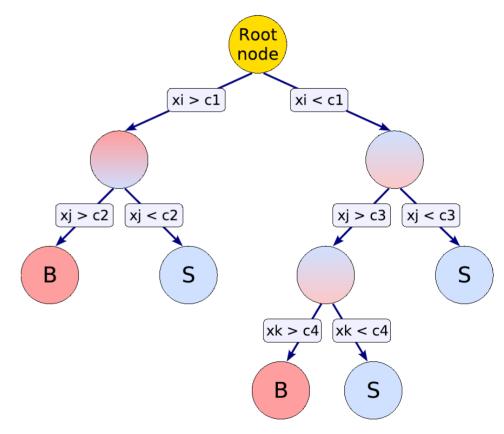

- $\lambda_{5,6,7}$ are complex (CP violation)
- Left-handed L_{1u}, L_{1d} with charge Q₁

field	$SU(2)_D$	γ_5	Q_1	Q_2	\mathbb{Z}_2
$\Phi_{1,2}$	2	0	0	0	+
L_1	2	-1	+1	0	+
$N_{u,d}$	1	+1	+1	0	+
L_2	2	-1	0	+1	_

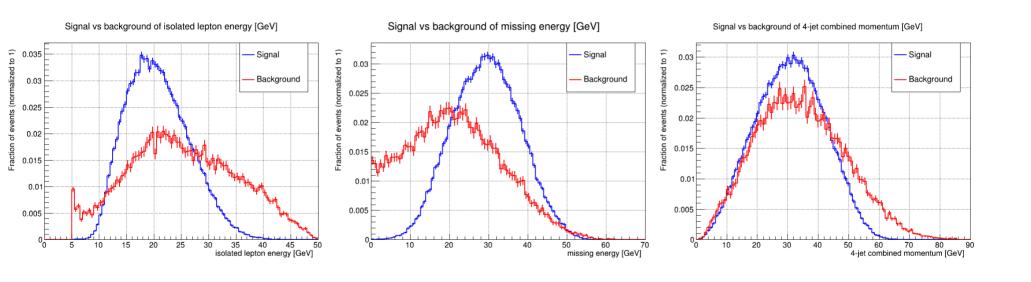
- Right-handed N_u, N_d (dark neutrinos) with charge Q₁
- L₂: massless particle with charge Q₂
 - Exists to counteract Witten's anomaly but not important

Early universe

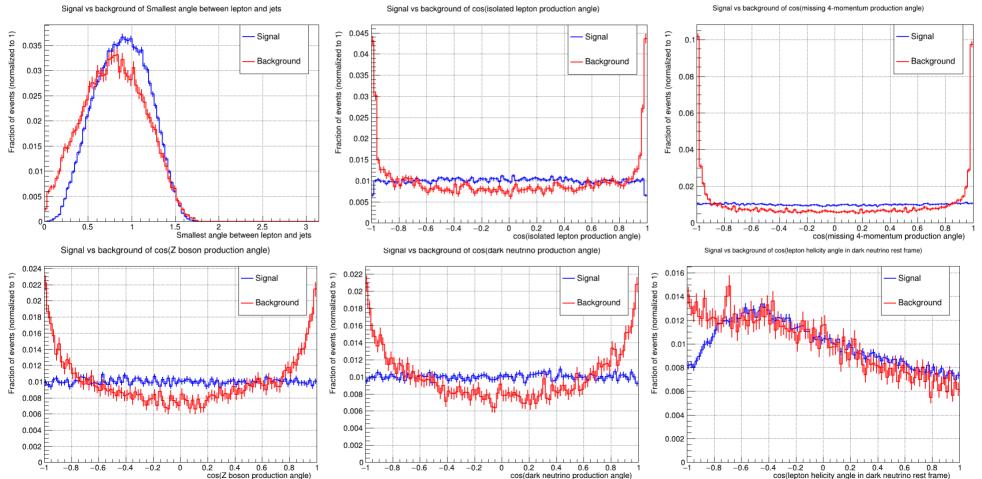
- I. Dark first-order phase transition in early universe
 - More particles than antiparticles in dark sector
- II.N_u decays to SM leptons
 - Q₁ asymmetry converted to SM lepton asymmetry
 - Some leptons converted to baryons through SM sphaleron
- III.After EW symmetry breaking, Nd decays to SM leptons
 - → additional lepton asymmetry

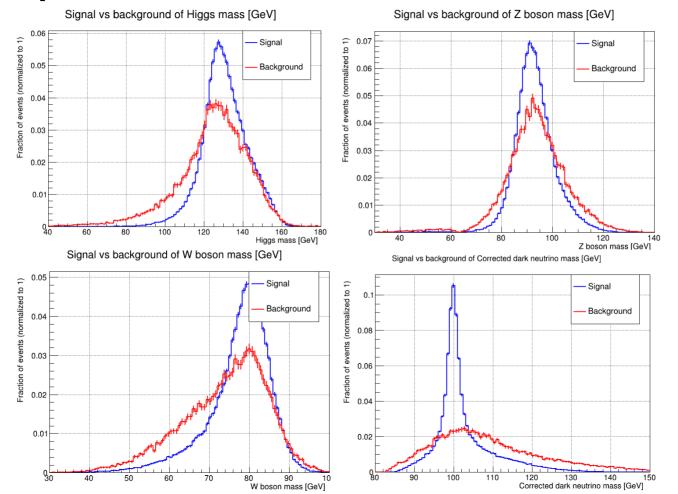

Techincal details

- Use ROOT::RDataFrame in Jupyter notebook Simplifies:
 - Making and analyzing cuts
 - Defining new variables
 - Running the code in parallel → performance boost
 - Visualize the filtered data
 - Exploratory data analysis


```
ROOT::RDataFrame df("myTree", file);
auto h = df.Filter("y > 2").Histo1D("x");
h->Draw()
```

Boosted decision tree


- Multiple binary decision trees are trained
- When evaluating an event, the trees "vote" if the event is signal or background
- The BDT output is the weighted mean of all trees
- Events are reweighted such that signal and background is equal in size


BDT parameter distributions - energies

BDT parameter distributions - angles

BDT parameter distributions - masses

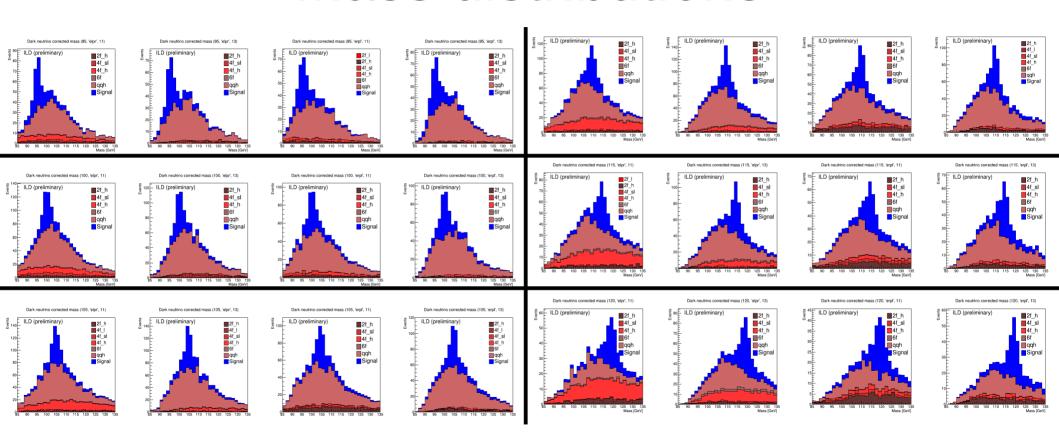
Example cut table for dark neutrino

2f h

4f I

4f sl

6f


qqh

2f I

Total signal Total background Significance

		5		9							44.
	No cuts	1396	136859842	0.12	12982897	77324421	10379315	19163106	16800470	1278	208355
	Pre-selection	1233	30132034	0.22	7366002	1606336	7651845	13260215	220833	872	2593
1% branching ratio	leptype == 11	627	14973089	0.16	1184642	1402269	4919234	7252824	198385	514	1522
100 GeV	elep/50. + emis/100. < 1	580	1136651	0.54	44637	248305	504438	192462	139969	415	642
	0.8 < mvalep	482	557011	0.65	28048	36926	348278	123436	16772	335	321
(-0.8, +0.3)	(180. < mvis) && (mvis < 225.)	438	235510	0.90	13427	17309	126473	67151	8377	220	255
Electron channel	0.007 < y34	376	19834	2.65	79	1762	298	9504	5855	200	213
	3 < min_n	357	10234	3.47	0	920	1	1726	5458	171	195
	(15. < mis.P()) && (mis.P() < 45.)	325	3498	5.26	0	256	0	671	1131	30	141
	MVA cut	242	825	7.41	0	56	0	59	146	13	55
		Total signal	Total background	Significance	2f_	.l 2f_l	n 4f_	l 4f_sl	4f_h	6f	qq
	No cuts	941	66651497	0.12	1031487	0 45672588	3 611430°	1 2839022	1570051	260	14040
1% branching ratio 120 GeV	Pre-selection	891	12565351	0.25	569674	8 979693	3 4109167	7 1739683	22431	194	1743
	leptype == 13	448	6449265	0.18	480320	7 116849	976723	3 542562	2613	45	726
	elep/70. + emis/90. < 1	434	609993	0.56	7996	1 30687	7 461188	32974	1971	40	317
(+0.8, -0.3)	0.6 < mvalep	431	561464	0.57	7480	4 19446	433438	3 29481	1301	39	295
Muon channel	(160. < mvis) && (mvis < 220.)	406	290455	0.75	6023	9 1609	186398	3 24018	1049	23	263
	, , ,		250.00								
	0.004 < y34	381	16966	2.89	43	2 2630	1067	7 9535	900	22	238
	0.004 < y34 4 < min_n			2.89 5.04		2 2630 0 747		7 9535 0 742		22 16	238 187
	•	381	16966		. (7 (693		

Mass distributions

