ECFA Higgs Factory 2nd Topical Workshop on Generators / Simulation

Jürgen Reuter

ECFA H/EW/Top Factory 2nd Topical MC Generator WS

- 1st WG2 Topical WS on Generators / Simulation, @CERN: Nov. 9-10, 2021
- Very efficient and effective organization \implies
- \geq 100 participants, roughly 30 at CERN
- Setting the stage: simulation tools, MCs, software frameworks

- 2nd WG2 Topical WS on Generators, @Brussels: June 21-22, 2023
- \geq 65 participants, roughly 15 at Brussels (U. Libre de Bruxelles & Vrije Universiteit)
- Transfers from IMCC Annual Meeting in Orsay + Les Houches
- Much more focused on MC generators: physics, beam spectra, technical details, benchmarks
- Only invited talks triggered by the conveners well, and some more self-suggested ones

J. R. Reuter, DESY

https://indico.cern.ch/event/1078675/

Conveners:

Patrizia Azzi

Fulvio Piccinini

Dirk Zerwas

https://indico.cern.ch/event/1266492/

ECFA H/EW/Top Factory 2nd Topical MC Generator WS

ECFA Higgs Factories: 2nd Topical Meeting on Generators

- 21.06.2023, 10:30 → 22.06.2023, 16:00 Europe/Zurich
- Solvay (ULB)
- Dirk Zerwas (Université Paris-Saclay (FR)), Fabio Maltoni (Universite Catholique de Louvain (UCL) (BE) and Università di Bologna)

Beschreibung Do not hesitate to contact us if you would like to make a presentation or if you would like to help with the work!

For information about the venue, travel and accomodations, please contact the local organisers: Barbara Clerbaux (barbara.clerbaux_at_ulb.be) or Fabio Maltoni (fabio.maltoni_at_uclouvain.be)

ECFA Higgs Factories study

- Beam simulation / luminosity spectra Ş
- QED: ePDFs vs. YFS, collinear vs. soft resummation
- Inclusive precision vs. exclusive description
- **Event formats**
- Software frameworks
- QCD: parton showers & hadronization
- Performance
- Some focus topics: BSM needs,
 - top threshold needs, Bhabha luminometry needs

J. R. Reuter, DESY

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

Beam simulations

- Micro-scale bunches create beam structure/-strahlung Ş
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.

J. R. Reuter, DESY

[Thorsten Ohl]

Avail.: 🗸 Avail.: (✓)

Avail.: $[\checkmark]$

Beam simulations

- Ş Micro-scale bunches create beam structure/-strahlung
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.

J. R. Reuter, DESY

Avail.: 🗸 Avail.: (✓) Avail.: $[\checkmark]$

Dalena/Esbjerg/Schulte [LCWS 2011]

Beam simulations

- Ş Micro-scale bunches create beam structure/-strahlung
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- Parameterized (delta peak \oplus power law)
- Generator for 2D histogrammed fit 3.
- Ş Easy implementation, covers main features Pro (1.):
- Ş Gaussian approximative, exceeds nominal collider energy Con (1.):
- Ģ Relatively easy implementation Pro (2.):
- Con (2.): Delta peak behaves badly in MC, beams maybe not factorizable/simple power law
- Pro (3.): most exact simulation, generator mode avoids artifacts in tails
- Con (3.): only available (yet) in dedicated tools like LumiLinker and CIRCE2

J. R. Reuter, DESY

 $D_{B_1B_2}(x_1, x_2) \neq D_{B_1}(x_1) \cdot D_{B_2}(x_2)$ $D_{B_1B_2}(x_1, x_2) \neq x_1^{\alpha_1}(1 - x_1)^{\beta_1} x_2^{\alpha_2}(1 - x_2)^{\beta_2}$

[Thorsten Ohl; Lindsey Gray]

- ĕ New beam simulations for FCC-ee: 4 IPs \Rightarrow 1.7x lumi (91 GeV) / 1.8x lumi (161/250 GeV)
- Ş New beam simulations for CCC and XCC (photon collider simulations)
- Ş Photon collider simulations *not* possible with parameterized spectra Ş Conclusion: CIRCE2-like sampling most versatile/general approach

Open Issues

J. R. Reuter, DESY

Beam simulations

- [Katsunobu Oide, FCC week]

[Thorsten Ohl; Lindsey Gray]

- New beam simulations for FCC-ee: 4 IPs \Rightarrow 1.7x lumi (91 GeV) / 1.8x lumi (161/250 GeV)
- New beam simulations for CCC and XCC (photon collider simulations)
- Ģ Photon collider simulations *not* possible with parameterized spectra
- Conclusion: CIRCE2-like sampling most versatile/general approach

- Still several Higgs factories missing in general beam spectrum repository
- Machine learning for sampling beam spectra not yet started (expected performance?)
- 2D-/3D-structure of beam spectra (z-dependence, copulas)

J. R. Reuter, DESY

Beam simulations

- Ş
- Ş
- Ş Possible NLL parton showers (final state only!) for e^+e^- :

$e^+e^- \to t\bar{t}$	166.37(12)	174.55(20)	1.05
$e^+e^- \rightarrow t\bar{t}j$	48.12(5)	53.41(7)	1.11
$e^+e^- ightarrow t\bar{t}jj$	8.592(19)	10.526(21)	1.23
$e^+e^- \rightarrow t\bar{t}jjj$	1.035(4)	1.405(5)	1.36
$e^+e^- \rightarrow t\bar{t}t\bar{t}$	$0.6388(8) \cdot 10^{-3}$	$1.1922(11) \cdot 10^{-3}$	1.87
$e^+e^- \rightarrow t\bar{t}t\bar{t}j$	$2.673(7) \cdot 10^{-5}$	$5.251(11) \cdot 10^{-5}$	1.96
$e^+e^- \rightarrow t\bar{t}H$	2.020(3)	1.912(3)	0.95
$e^+e^- \rightarrow t\bar{t}Hj$	$2.536(4) \cdot 10^{-1}$	$2.657(4) \cdot 10^{-1}$	1.05
$e^+e^- \rightarrow t\bar{t}Hjj$	$2.646(8) \cdot 10^{-2}$	$3.123(9) \cdot 10^{-2}$	1.18
$e^+e^- \rightarrow t\bar{t}Z$	4.638(3)	4.937(3)	1.06
$e^+e^- \rightarrow t\bar{t}Zj$	$6.027(9) \cdot 10^{-1}$	$6.921(11) \cdot 10^{-1}$	1.15
$e^+e^- \rightarrow t\bar{t}Zjj$	$6.436(21) \cdot 10^{-2}$	$8.241(29) \cdot 10^{-2}$	1.28
$e^+e^- \rightarrow t\bar{t}W^{\pm}jj$	$2.387(8) \cdot 10^{-4}$	$3.716(10) \cdot 10^{-4}$	1.56
$e^+e^- \rightarrow t\bar{t}HZ$	$3.623(19) \cdot 10^{-2}$	$3.584(19) \cdot 10^{-2}$	0.99
$e^+e^- \rightarrow t\bar{t}ZZ$	$3.788(6) \cdot 10^{-2}$	$4.032(7) \cdot 10^{-2}$	1.06
$e^+e^- \rightarrow t\bar{t}HH$	$1.3650(15) \cdot 10^{-2}$	$1.2168(16) \cdot 10^{-2}$	0.89
$e^+e^- \rightarrow t\bar{t}W^+W^-$	$1.3672(21) \cdot 10^{-1}$	$1.5385(22) \cdot 10^{-1}$	1.13

Shower	Ordering	NLL Validation
PanScales [2002.11114]	$^{1}0 \leq \beta < 1$	Fixed and all order numerical tests for a range of observables
Alaric [2208.06057]	$k_t \ (eta=0)$	Analytical, numerical tests for global event shapes
Deductor [2011.04777]	$egin{array}{ccc} k_t, \Lambda & (eta & = \ 0, 1) \end{array}$	Analytical and numerical tests for thrust
Manchester- Vienna [2003.06400]	$k_t \ (eta=0)$	Analytical for thrust and multiplicity

J. R. Reuter, DESY

Fixed order NLO and mostly also NNLO QCD (semi-) automated and validated Machinery of parton showers well advanced, recap of CERN workshop 04/2023

[Alan Price] [Zhijie Zhao] [Jack Helliwell] [Leif Gellersen]

NNLO NLO NLO

 $e^+e^- \rightarrow t\bar{t}W^+W^-$ | 1.3672(21) $\cdot 10^{-1}$ 1.5385(22) $\cdot 10^{-1}$ 1.13

- Ş
- Ş
- Ş Possible NLL parton showers (final state only!) for e^+e^- :

	LO			Shower	Ordering
$e^+e^- \to t\bar{t}$ $e^+e^- \to t\bar{t}j$ $e^+e^- \to t\bar{t}j$	166.37(12) 48.12(5) 8.502(10)	174.55(20) 53.41(7)	1.05 1.11	PanScales [2002.11114]	$10 \le \beta < 1$
$e^+e^- \rightarrow t\bar{t}jj$ $e^+e^- \rightarrow t\bar{t}jj$ $e^+e^- \rightarrow t\bar{t}t\bar{t}$ $e^+e^- \rightarrow t\bar{t}t\bar{t}j$	$\begin{array}{c} 8.592(19) \\ 1.035(4) \\ 0.6388(8) \cdot 10^{-3} \\ 2.673(7) \cdot 10^{-5} \end{array}$	$\begin{array}{c} 10.526(21) \\ 1.405(5) \\ 1.1922(11) \cdot 10^{-3} \\ 5.251(11) \cdot 10^{-5} \end{array}$	1.23 1.36 1.87 1.96	Alaric [2208.06057]	$k_t \ (\beta = 0)$
$e^+e^- \to t\bar{t}H$ $e^+e^- \to t\bar{t}Hj$ $e^+e^- \to t\bar{t}Hj$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} 1.912(3) \\ 2.657(4) \cdot 10^{-1} \\ 2.122(0) & 10^{-2} \end{array} $	0.95 1.05	Deductor [2011.04777]	$\begin{vmatrix} k_t, \Lambda & (\beta = 0, 1) \end{vmatrix}$
$e^+e^- \to t\bar{t}Zj$ $e^+e^- \to t\bar{t}Zj$ $e^+e^- \to t\bar{t}Zjj$	$\begin{array}{c} 2.646(8) \cdot 10 \\ 4.638(3) \\ 6.027(9) \cdot 10^{-1} \\ 6.436(21) \cdot 10^{-2} \end{array}$	$\begin{array}{c} 3.123(9) \cdot 10 \\ 4.937(3) \\ 6.921(11) \cdot 10^{-1} \\ 8.241(29) \cdot 10^{-2} \end{array}$	1.18 1.06 1.15 1.28	Manchester- Vienna [2003.06400]	$k_t \ (\beta = 0)$
$e^{+}e^{-} \rightarrow t\bar{t}W^{\pm}jj$ $e^{+}e^{-} \rightarrow t\bar{t}HZ$ $e^{+}e^{-} \rightarrow t\bar{t}ZZ$ $e^{+}e^{-} \rightarrow t\bar{t}HH$	$ \begin{array}{c} 2.387(8) \cdot 10^{-4} \\ 3.623(19) \cdot 10^{-2} \\ 3.788(6) \cdot 10^{-2} \\ 1.3650(15) \cdot 10^{-2} \end{array} $	$3.716(10) \cdot 10^{-4} 3.584(19) \cdot 10^{-2} 4.032(7) \cdot 10^{-2} 1.2168(16) \cdot 10^{-2}$	$1.56 \\ 0.99 \\ 1.06 \\ 0.89$		

- Ongoing work towards NNLL showers, sub-leading color (FCC = full color correlations) Ģ
- NLO matching automated, different approaches, different error estimates;
- NNLO matching still process-dependent; also does not yet preserve NNLL accuracy
- Elephant in the room: fragmentation \Rightarrow no real progress in last 30 years Ģ

J. R. Reuter, DESY

Fixed order NLO and mostly also NNLO QCD (semi-) automated and validated Machinery of parton showers well advanced, recap of CERN workshop 04/2023

> **NLL** Validation Fixed and all order numerical tests for a range of observables Analytical, numerical tests for global event shapes Analytical and numerical tests for thrust Analytical for thrust and multiplicity

[Alan Price] [Zhijie Zhao] [Jack Helliwell] [Leif Gellersen]

- Ş Tuning: automated tools w/ built-in correlations (Professor, AutoTunes, Apprentice, ...)
- Ş Global event shapes, α_s , charge multiplicity, hadron multiplicity
- Ş Many different parameters: e.g. IR cutoff, string parameters vs. cluster parameters etc.

J. R. Reuter, DESY

[Alan Price] [Zhijie Zhao] [Jack Helliwell] [Leif Gellersen]

- Tuning: automated tools w/ built-in correlations (Professor, AutoTunes, Apprentice, ...)
- Ş Global event shapes, α_s , charge multiplicity, hadron multiplicity
- Many different parameters: e.g. IR cutoff, string parameters vs. cluster parameters etc.

Only genuine ILD contribution to the workshop Event shapes and hadron level MC data

J. R. Reuter, DESY

[Alan Price] [Zhijie Zhao] [Jack Helliwell] [Leif Gellersen]

Comparison of NLO QCD MC generators at detector level (aSherpa, MG5_aMC@NLO, Whizard)

Quite a severe impact on the development of LEP legacy Monte Carlos, YFS-style tools (the whole KKMC, YFS-WW/ZZ, Photos, Tauola, BHLumi/BHWide !

J. R. Reuter, DESY

Stanisław ("Staszek") Jadach, 1943 – 2023

RAPIDITY GENERATOR FOR MONTE-CARLO CALCULATIONS OF CYLINDRICAL PHASE SPACE

S. JADACH

Institute of Physics, Jagellonian University, Cracow, Poland

Received 1 November 1974

- Fixed-order NLO QED/NLO EW calculations under control Ş
- Infinitely tough way to go to fixed-order NNLO QED/EW Ş

J. R. Reuter, DESY

[Stefano Frixione] [Fulvio Piccinini] [Alan Price]

[Maciej Skrzypek] [Bennie Ward]

- **Fixed-order NLO QED/NLO EW calculations under control**
- Infinitely tough way to go to fixed-order NNLO QED/EW Ģ

Two major bottlenecks

Virtual integrals with many mass scales/off-shell legs Abreu ea., Badger ea., Baglio ea., Brønnum-Hansen ea.

IR pole treatment / subtraction

CS, FKS, NS, Stripper, qT/sub-jettiness etc.

J. R. Reuter, DESY

[Stefano Frixione] [Fulvio Piccinini] [Alan Price]

[Maciej Skrzypek] [Bennie Ward]

- Fixed-order NLO QED/NLO EW calculations under control [Stefano Frixione] [Fulvio Piccinini] Infinitely tough way to go to fixed-order NNLO QED/EW [Alan Price]

Two major bottlenecks

Virtual integrals with many mass scales/off-shell legs Abreu ea., Badger ea., Baglio ea., Brønnum-Hansen ea.

IR pole treatment / subtraction

CS, FKS, NS, Stripper, qT/sub-jettiness etc.

[Maciej Skrzypek] [Bennie Ward]

- FKS soft/eikonal subtraction sufficient for low-energy machines
- NNLO QED (massive, virtuals pending): McMule Signer ea.
- Baby steps to NNLO automation: Griffin Chen/Freitas, 2023
- NNLO EW needs full-fledged soft+collinear NNLO subtraction

Infinitely tough way to go to fixed-order NNLO QED/EW

Two major bottlenecks

Virtual integrals with many mass scales/off-shell legs Abreu ea., Badger ea., Baglio ea., Brønnum-Hansen ea.

IR pole treatment / subtraction

CS, FKS, NS, Stripper, qT/sub-jettiness etc.

J. R. Reuter, DESY

[Stefano Frixione] [Fulvio Piccinini] [Alan Price]

[Maciej Skrzypek] [Bennie Ward]

NNLO QED (massive, virtuals pending): McMule Signer ea.

NNLO EW needs full-fledged soft+collinear NNLO subtraction

- [Stefano Frixione] Fixed-order NLO QED/NLO EW calculations under control Infinitely tough way to go to fixed-order NNLO QED/EW [Fulvio Piccinini] [Alan Price]

Two major bottlenecks

Virtual integrals with many mass scales/off-shell legs Abreu ea., Badger ea., Baglio ea., Brønnum-Hansen ea.

IR pole treatment / subtraction

Collinear logarithms

 $L = \log \frac{Q^2}{m^2}$

CS, FKS, NS, Stripper, qT/sub-jettiness etc.

 $\sqrt{Q^2} = m_Z$ $L = 24.18 \implies \frac{\alpha}{\pi}L = 0.06$ $0 \le m_{ll} \le m_Z, \quad \ell = 6.89 \implies \frac{\alpha}{\pi}\ell = 0.017$ $m_Z - 1 \text{ GeV} \le m_{ll} \le m_Z, \quad \ell = 10.60 \implies \frac{\alpha}{-}\ell = 0.026$

J. R. Reuter, DESY

[Maciej Skrzypek] [Bennie Ward]

- FKS soft/eikonal subtraction sufficient for low-energy machines
- NNLO QED (massive, virtuals pending): McMule Signer ea.
- Baby steps to NNLO automation: Griffin Chen/Freitas, 2023
- NNLO EW needs full-fledged soft+collinear NNLO subtraction

YFS (soft/eikonal factorization)

$$\left\{e^+(p_1) + e^-(p_2) \longrightarrow X(p_X) + \sum_{i=0}^n \gamma(k_n)\right\}_{n=0}^{\infty}$$

 $d\sigma(L,\ell) = e^{Y(p_1,p_2,p_X)} \sum_{n=0}^{\infty} \beta_n \left(\mathcal{R}p_1, \mathcal{R}p_2, \mathcal{R}p_X; \{k_i\}_{i=0}^n\right) d\mu_{X+n\gamma}$

J. R. Reuter, DESY

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

YFS (soft/eikonal factorization)

$$\left\{e^+(p_1) + e^-(p_2) \longrightarrow X(p_X) + \sum_{i=0}^n \gamma(k_n)\right\}_{n=0}^{\infty}$$

 $d\sigma(L,\ell) = e^{Y(p_1,p_2,p_X)} \sum_{0}^{\infty} \beta_n \left(\mathcal{R}p_1, \mathcal{R}p_2, \mathcal{R}p_X; \{k_i\}_{i=0}^n\right) d\mu_{X+n\gamma}$

J. R. Reuter, DESY

Electron PDFs (collinear factorization)

$$\left\{k(p_k) + l(p_l) \longrightarrow X(p_X) + \sum_{i=0}^n a_i(k_n)\right\}_{n=0}^{\infty} \qquad a_i = e^{-\frac{1}{2}}$$

$$d\sigma_{kl} = \sum_{ij} \int dz_{+} dz_{-} \Gamma_{i/k}(z_{+}, \mu^{2}, m^{2}) \Gamma_{j/l}(z_{-}, \mu^{2}, m^{2})$$
$$\times d\hat{\sigma}_{ij}(z_{+}p_{k}, z_{-}p_{l}, \mu^{2}; p_{X}, \{k_{i}\}_{i=0}^{n})$$

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

10 / 17

 $\gamma^{\pm},\gamma\dots$

YFS (soft/eikonal factorization)

$$\left\{e^+(p_1) + e^-(p_2) \longrightarrow X(p_X) + \sum_{i=0}^n \gamma(k_n)\right\}_{n=0}^{\infty}$$

J. R. Reuter, DESY

Electron PDFs (collinear factorization)

$$\left\{k(p_k) + l(p_l) \longrightarrow X(p_X) + \sum_{i=0}^n a_i(k_n)\right\}_{n=0}^{\infty} \qquad a_i = e^{-\frac{1}{2}}$$

$$d\sigma_{kl} = \sum_{ij} \int dz_{+} dz_{-} \Gamma_{i/k}(z_{+}, \mu^{2}, m^{2}) \Gamma_{j/l}(z_{-}, \mu^{2}, m^{2})$$
$$\times d\hat{\sigma}_{ij}(z_{+}p_{k}, z_{-}p_{l}, \mu^{2}; p_{X}, \{k_{i}\}_{i=0}^{n})$$

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

10 / 17

 ${}^{\pm},\gamma\dots$

YFS (soft/eikonal factorization)

$$\left\{e^+(p_1) + e^-(p_2) \longrightarrow X(p_X) + \sum_{i=0}^n \gamma(k_n)\right\}_{n=0}^{\infty}$$

J. R. Reuter, DESY

Electron PDFs (collinear factorization)

$$\left\{k(p_k) + l(p_l) \longrightarrow X(p_X) + \sum_{i=0}^n a_i(k_n)\right\}_{n=0}^{\infty} \qquad a_i = e^{-\frac{1}{2}}$$

$$d\sigma_{kl} = \sum_{ij} \int dz_{+} dz_{-} \Gamma_{i/k}(z_{+}, \mu^{2}, m^{2}) \Gamma_{j/l}(z_{-}, \mu^{2}, m^{2})$$
$$\times d\hat{\sigma}_{ij}(z_{+}p_{k}, z_{-}p_{l}, \mu^{2}; p_{X}, \{k_{i}\}_{i=0}^{n})$$

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

10 / 17

 $,\gamma\ldots$

YFS (soft/eikonal factorization)

$$\left\{e^+(p_1) + e^-(p_2) \longrightarrow X(p_X) + \sum_{i=0}^n \gamma(k_n)\right\}_{n=0}^{\infty}$$

J. R. Reuter, DESY

Electron PDFs (collinear factorization)

$$\left\{k(p_k) + l(p_l) \longrightarrow X(p_X) + \sum_{i=0}^n a_i(k_n)\right\}_{n=0}^{\infty} \qquad a_i = e^{4}$$

$$d\sigma_{kl} = \sum_{ij} \int dz_{+} dz_{-} \Gamma_{i/k}(z_{+}, \mu^{2}, m^{2}) \Gamma_{j/l}(z_{-}, \mu^{2}, m^{2})$$
$$\times d\hat{\sigma}_{ij}(z_{+}p_{k}, z_{-}p_{l}, \mu^{2}; p_{X}, \{k_{i}\}_{i=0}^{n})$$

- Collinear PDFs available at NLL (MG5_aMC@NL0, [Whizard])
- \bigcirc YFS available for $e^+e^- \rightarrow ff, WW, ZZ, ZH$ and in Sherpa
- YFS little systematic uncertainties
- Collinear PDFs much larger scheme uncertainties
- Different schemes available: MS vs. DIS
- Computation non-trivial, much less universal, but possible
- PDF calculation analogous to LHC
- Calculation allow uncertainties of 0.2-0.4 per cent

[Alan Price]

Technical Benchmarks of Monte Carlo for Future Lepton Colliders

As a first step we can follow in the footsteps of LEP Reports of the Working Groups on Precision Calculations for LEP2 Physics - CERN Document Server

<u>91.2 GeV</u>

Also look at +- 3Gev around zpole (88GeV, 94GeV)

- $e^+e^- \rightarrow f\bar{f}$
 - $\circ e^+e^- \rightarrow l\bar{l}$

Lep Cut Examples: inclusive $\sqrt{\frac{M^2}{s}} > 0.1$ exclusive $\sqrt{\frac{M^2}{s}} > 0.85$

First benchmarks:

- 1. Total XS
- 2. $\frac{d\sigma}{dcos(\theta)}$, $\frac{d\sigma}{dM}$, others?
- 3. Polarised beams?
- 4. LL PDF c.f input eta, beta, mixed
- 5. AFB, include |cos(theta)| < 0.97

 $\circ e^+e^- \rightarrow e^+e^-$

J. R. Reuter, DESY

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

[Alan Price]

[all]

Technical Benchmarks of Monte Carlo for Future Lepton Colliders

As a first step we can follow in the footsteps of LEP Reports of the Working Groups on Precision Calculations for LEP2 Physics - CERN Document Server

91.2 GeV

Also look at +- 3Gev around zpole (88GeV, 94GeV)

- $e^+e^- \rightarrow f\bar{f}$
 - $\circ e^+ e^- \rightarrow l\bar{l}$

Lep Cut Examples: inclusive $\sqrt{\frac{M^2}{s}} > 0.1$ exclusive $\sqrt{\frac{M^2}{s}} > 0.85$

First benchmarks:

- 1. Total XS
- 2. $\frac{d\sigma}{dcos(\theta)}$, $\frac{d\sigma}{dM}$, others?
- 3. Polarised beams?
- 4. LL PDF c.f input eta, beta, mixed
- 5. AFB, include |cos(theta)| < 0.97

 $\circ e^+e^- \rightarrow e^+e^-$

- **Markov** Reproducability & versioning
- "Theory-inspired" approach: start from simplest "parton" level upwards
- then switch on: polarization, QED ISR, parton shower, fragmentation, NLO
- Include multi-purpose tools and dedicated/specialized Monte Carlos
- Cover all energy stages: 91, 161, 240/250, 365-380 GeV (beyond?)
- Time scale: ca. end of 2025 (before CERN yellow report)
- Involve as many ECRs as possible
- Publish theory paper; CERN yellow report: only summary table

Community input and participation *very* much welcome!

[Fulvio Piccinini]

J. R. Reuter, DESY

[Fulvio Piccinini]

Electroweak vs QCD

- "EW software can be required to give relatively unambiguous" answers, with high implied accuracy"
- "QCD software is still descriptive rather than predictive"

Electroweak (EW)	strong (QCD)		
'new' phenomena	'old' phenomena		
'new' software	 'old' software 		
rapid evolution	moderate evolution		
theory 'solved'	theory 'unsolved'		
high accuracy	low accuracy		
agreement expected	no agreement expected		

J. R. Reuter, DESY

[Fulvio Piccinini]

Electroweak vs QCD

- "EW software can be required to give relatively unambiguous" answers, with high implied accuracy"
- "QCD software is still descriptive rather than predictive"

Electroweak (EW)	strong (QCD)
'new' phenomena	'old' phenomena
'new' software	 'old' software
rapid evolution	moderate evolution
theory 'solved'	theory 'unsolved'
high accuracy	low accuracy
agreement expected	no agreement expected

• given the available computational power: seminalytical vs MC

semianalytical	Monte Carlo	
inclusive	exclusive	
few cuts allowed	many cuts allowe	
not good for experiment	good for experime	
no statistical error	statistical error	
fast	not so fast	
cross section arbitrary	cross sections posit	

J. R. Reuter, DESY

[Fulvio Piccinini]

Electroweak vs QCD

- "EW software can be required to give relatively unambiguous answers, with high implied accuracy"
- "QCD software is still descriptive rather than predictive"

Electroweak (EW)	strong (QCD)
'new' phenomena	'old' phenomena
'new' software	 'old' software
rapid evolution	moderate evolution
theory 'solved'	theory 'unsolved'
high accuracy	low accuracy
agreement expected	no agreement expected

• given the available computational power: seminalytical vs MC

semianalytical	Monte Carlo	
inclusive	exclusive	
few cuts allowed	many cuts allowe	
not good for experiment	good for experime	
no statistical error	statistical error	
fast	not so fast	
cross section arbitrary	cross sections posit	

J. R. Reuter, DESY

learned a lot about my own supervisor

- CERN Yellow Report demands on LEP1/2 MCs:
- Higher order QED corrections
- Multi-photon kinematics
- Implementation of weak corrections
- Beam polarization (sic!)
- Bhabha scattering mode
- Support (sic!)
- Interface to hadronization packages
- Higgs production and decay implemented
- Possibility of anomalous couplings

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

[Fulvio Piccinini]

Electroweak vs QCD

- "EW software can be required to give relatively unambiguous" answers, with high implied accuracy"
- "QCD software is still descriptive rather than predictive"

Electroweak (EW)	strong (QCD)
'new' phenomena	'old' phenomena
'new' software	 'old' software
rapid evolution	moderate evolution
theory 'solved'	theory 'unsolved'
high accuracy	low accuracy
agreement expected	no agreement expected

• given the available computational power: seminalytical vs MC

semianalytical	Monte Carlo	
inclusive	exclusive	
few cuts allowed	many cuts allowe	
not good for experiment	good for experime	
no statistical error	statistical error	
fast	not so fast	
cross section arbitrary	cross sections posit	

J. R. Reuter, DESY

- learned a lot about my own supervisor
- CERN Yellow Report demands on LEP1/2 MCs:
- Higher order QED corrections
- Multi-photon kinematics
- Implementation of weak corrections
- Beam polarization (sic!)
- Bhabha scattering mode
- Support (sic!)
- Interface to hadronization packages
- Higgs production and decay implemented
- Possibility of anomalous couplings
- it is never underestimated the importance of having predictions from different event generators, necessary for a robust assessment of the th. uncertanty

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

[Maciej Skrzypek]

Bhabha cross sect. depends on detector acceptance angles

$$\sigma_{Bh} \simeq 4\pi \alpha^2 \left(\frac{1}{t_{\min}} - \frac{1}{t_{\max}}\right) = 4\pi \alpha^2 \left(\frac{t_{\max} - t_{\min}}{\overline{t}^2}\right), \quad \overline{t} = \sqrt{t_{\min} t_{\max}}$$

Machine	$\theta_{\min} \div \theta_{\max} \text{ [mrad]}$	\sqrt{s} [GeV]	$\bar{t}/s \simeq \bar{ heta}^2/4$	\sqrt{t} [Ge]
LEP	28÷50	M _Z	$3.5 imes 10^{-4}$	1.70
FCCee	64÷86	M _Z	13.7×10^{-4}	3.37
FCCee	64÷86	240	13.7×10^{-4}	8.9
FCCee	64÷86	350	13.7×10^{-4}	13.0
ILC	31÷77	500	$6.0 imes 10^{-4}$	12.2
ILC	31÷77	1000	$6.0 imes 10^{-4}$	24.4
CLIC	39÷134	3000	13.0×10^{-4}	108

J. R. Reuter, DESY

nax

V]

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

[Maciej Skrzypek]

Bhabha cross sect. depends on detector acceptance angles

$$\sigma_{Bh} \simeq 4\pi \alpha^2 \left(\frac{1}{t_{\min}} - \frac{1}{t_{\max}}\right) = 4\pi \alpha^2 \left(\frac{t_{\max} - t_{\min}}{\overline{t}^2}\right), \quad \overline{t} = \sqrt{t_{\min} t_{\max}}$$

Machine	$\theta_{\min} \div \theta_{\max}$ [mrad]	\sqrt{s} [GeV]	$\bar{t}/s \simeq \bar{ heta}^2/4$	\sqrt{t} [GeV]
LEP	28÷50	M _Z	$3.5 imes 10^{-4}$	1.70
FCCee	64÷86	M _Z	13.7×10^{-4}	3.37
FCCee	64÷86	240	13.7×10^{-4}	8.9
FCCee	64÷86	350	13.7×10^{-4}	13.0
ILC	31÷77	500	$6.0 imes 10^{-4}$	12.2
ILC	31÷77	1000	6.0×10^{-4}	24.4
CLIC	39÷134	3000	13.0×10^{-4}	108

J. R. Reuter, DESY

Current BHLUMI precision forecast for FCCee								
Type of correction / Error	<i>M_Z</i> (2019) [1]	240 GeV	350 GeV					
(a) Photonic $\mathcal{O}(L_e \alpha^2)$	0.027%	0.032%	0.033%					
(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015%	0.026%	0.028%					
(c) Vacuum polariz.	0.009%	0.020%	0.022%					
(d) Light pairs	0.010%	0.015%	0.015%					
(e) Z and s-channel γ exchange	0.09%	0.25% (0.034%)	0.5% (0.					
(f) Up-down interference	0.009%	0.010%	0.010%					
(g) Technical Precision	[0.027%]							
Total	10×10^{-4}	$25 imes 10^{-4}$	50 × 10 ⁻					
		(6×10^{-4})	(8.7 × 10					

nax

[Maciej Skrzypek]

Bhabha cross sect. depends on detector acceptance angles

$$\sigma_{Bh} \simeq 4\pi \alpha^2 \left(\frac{1}{t_{\min}} - \frac{1}{t_{\max}}\right) = 4\pi \alpha^2 \left(\frac{t_{\max} - t_{\min}}{\overline{t}^2}\right), \quad \overline{t} = \sqrt{t_{\min} t_{\max}}$$

Machine	$\theta_{\min} \div \theta_{\max} \text{ [mrad]}$	\sqrt{s} [GeV]	$\bar{t}/s \simeq \bar{\theta}^2/4$	\sqrt{t} [GeV]				(0.7 × 1)
LEP	28÷50	MZ	$3.5 imes 10^{-4}$	1.70		Faraaat		
FCCee	64÷86	MZ	13.7×10^{-4}	3.37	Type of correction / Error		FCCeeato	FCCeeaso
FCCee	64÷86	240	13.7×10^{-4}	8.9	(a) Photonic $\mathcal{O}(L_{e}^{2}\alpha^{3})$	0.10×10^{-4}	0.10×10^{-4}	0.13 × 10 ⁻
FCCee	64÷86	350	13.7×10^{-4}	13.0	(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	$0.26 imes 10^{-4(a)}$	0.27 × 10⁻
ILC	31÷77	500	6.0×10^{-4}	12.2	(c) Vacuum polariz.	0.6×10^{-4}	1.0×10^{-4}	1.1×10^{-4}
ILC	31÷77	1000	6.0×10^{-4}	24.4	(d) Light pairs	0.5×10^{-4}	0.4×10^{-4}	0.4×10^{-4}
CLIC	39÷134	3000	13.0×10^{-4}	108	(f) Up-down interference	0.1×10^{-4} 0.1 × 10 ⁻⁴	0.09×10^{-4}	0.1×10^{-4}
L	I	1	1	<u> </u>	Total	1.0×10^{-4}	1.5×10^{-4}	1.6 × 10 ⁻⁴

J. R. Reuter, DESY

Current BHLU	IMI precision fore	cast for FCCee	
Type of correction / Error	<i>M_Z</i> (2019) [1]	240 GeV	350 GeV
(a) Photonic $\mathcal{O}(L_e \alpha^2)$	0.027%	0.032%	0.033%
(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015%	0.026%	0.028%
(c) Vacuum polariz.	0.009%	0.020%	0.022%
(d) Light pairs	0.010%	0.015%	0.015%
(e) Z and s-channel γ exchange	0.09%	0.25% (0.034%)	0.5% (0.0
(f) Up-down interference	0.009%	0.010%	0.010%
(g) Technical Precision	[0.027%]		
Total	10×10^{-4}	$25 imes 10^{-4}$	50 × 10 ⁻
		(6×10^{-4})	(8.7 × 10

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

$$\sigma_{Bh} \simeq 4\pi \alpha^2 \left(\frac{1}{t_{\min}} - \frac{1}{t_{\max}}\right) = 4\pi \alpha^2 \left(\frac{t_{\max} - t_{\min}}{\overline{t}^2}\right), \quad \overline{t} = \sqrt{t_{\min} t_{\max}}$$

[Maciej Skrzypek]					Current BHLUMI precision forecast for FCCee			
-	· · · -				Type of correction / Error	<i>M_Z</i> (2019) [1]	240 GeV	350 GeV
				(a) Photonic $\mathcal{O}(L_e \alpha^2)$	0.027%	0.032%	0.033%	
Bhabha cro	oss sect. depends o	n detector a	cceptance ang	(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015%	0.026%	0.028%	
	•		1 0	(c) Vacuum polariz.	0.009%	0.020%	0.022%	
_	$_{2}(1 1)$	$\frac{1}{2} - \frac{1}{2} t_{max}$	$t_{min} - t_{min}$	(d) Light pairs	0.010%	0.015%	0.015%	
$\sigma_{\it Bh} \simeq$ 4	$\pi \alpha^2 \left(\frac{1}{4} - \frac{1}{4} \right) =$	$= 4\pi \alpha^2 \left(\frac{-\pi \alpha}{2} \right)$	$\frac{1}{\overline{\mathbf{r}}^2}$), $t =$	(e) Z and s-channel γ exchange	0.09%	0.25% (0.034%)	0.5% (0.0	
	\ <i>l</i> min <i>l</i> max /		t^2)	(f) Up-down interference	0.009%	0.010%	0.010%	
					(g) Technical Precision	[0.027%]		
					Total	10×10^{-4}	25×10^{-4}	50 × 10 ⁻
			7 / 72 / 4				(6×10^{-4})	(8.7 × 10
Machine	$\theta_{\min} \div \theta_{\max}$ [mrad]	√ <i>s</i> [GeV]	$t/s \simeq \theta^2/4$	\sqrt{t} [GeV]		·	· ·	·
LEP	28÷50	M_Z	$3.5 imes 10^{-4}$	1.70				
FCCee	64 <u>-</u> 86	M-	13.7×10^{-4}	3.37		Forecast		
				0.07	Type of correction / Error	FCCee _{Mz} [1]	FCCee ₂₄₀	FCCee ₃₅₀
FCCee	64÷86	240	13.7×10^{-4}	8.9	(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10 × 10 ⁻⁴	0.10×10^{-4}	0.13×10^{-1}
FCCee	64÷86	350	$13.7 imes 10^{-4}$	13.0	(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	$0.26 \times 10^{-4(a)}$	0.27×10^{-1}
ILC	31÷77	500	$6.0 imes 10^{-4}$	12.2	(c) Vacuum polariz.	0.6×10^{-4}	1.0×10^{-4}	1.1×10^{-4}
	$21 \cdot 77$	1000	6.0×10^{-4}	24.4	(d) Light pairs	0.5×10^{-4}	0.4×10^{-4}	0.4×10^{-4}
	51-11	1000		24.4	(e) Z and s-channel γ exch.	0.1 × 10 ⁻⁴	$1.0 \times 10^{-4(*)}$	1.0×10^{-4}
CLIC	39÷134	3000	13.0×10^{-4}	108	(f) Up-down interference	0.1 × 10 ⁻⁴	0.09×10^{-4}	0.1×10^{-4}
					Total	1.0×10^{-4}	1.5×10^{-4}	1.6×10^{-4}

- Major ingredients: hadronic vacuum polarization, EW corrections, light fermion pairs
- Inclusion of 4f, 4f + γ , 5f, 6f backgrounds necessary at matrix element level

J. R. Reuter, DESY

Technical precision needs 2nd code: BHLumi vs. BabaYaga (NNLO in hard process possible)

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

Focus topics II: BSM needs

[Sarah Williams]

- Focus much on LLP/displaced vertices
- Feature request for LLP in Whizard
- Some confusion on UFO vs. generator-specific models

factory m_H, σ, Γ_H self-coupling $H \rightarrow bb, cc, ss, gg$ H→inv ee→H H→bs, ..

Higgs

Тор

mtop, Γtop, ttZ, FCNCs

LLPs that are semi-stable or decay in the sub-detectors are predicted in a variety of BSM models:

- Heavy Neutral Leptons (HNLs)
- RPV SUSY
- Dark photons
- ALPs
- Dark sector models

J. R. Reuter, DESY

Focus topics II: BSM needs

[Sarah Williams]

- Focus much on LLP/displaced vertices
- Feature request for LLP in Whizard
- Some confusion on UFO vs. generator-specific models

m_H, σ, Γ_H self-coupling $H \rightarrow bb, cc, ss, gg$ H→inv ee→H H→bs, ..

Higgs

factory

Тор

mtop, Γtop, ttZ, FCNCs

J. R. Reuter, DESY

Are there fundamental differences between generators when it comes to assumptions/frameworks used for calculating BSM processes? Can we expect ~ 100% agreement up to numerical precision when the same process is calculated?

Completely unknown: theoretical uncertainties, completely unknown: systematic uncertainties For $e^+e^- \rightarrow W^+W^-bb$ at NLO QCD (continuum) to NLO NRQCD \oplus NLL vNRQCD matched in Whizard Implemented 2013-17 (1 postdoc, 2 Phd students left physics), recently (re-)validated in Whizard v3.x G Attempt in FCC-ee by Jeremy Andrea (director at Strasbourg) and A.F. Zarnecki (student finished) Some purely technical problems: tested with ISR, doesn't work with beam spectrum, fails with spectrum & polarization Complicated procedure of six different differential cross section contributions Plagued by very bad number of negative weights No person-power in Whizard: open call for participation & contribution there are open theoretical challenges !!

DESY.

[Andy Buckley] [Gerard Ganis] [Andrea Valassi]

- Software framework (Key4Hep, EDM4HEP) universally adapted by CEPC, ILC, CLIC, FCC-ee, CCC (?)
- Discussion on performance, portability, installation and deployment chains
- Discussed: porting to GPUs, mentioned: vectorization, not discussed: OpenMPI / coarray etc.

Most popular event format for MC authors: HepMC3 (HepMC2 only a "C++ version of COMMON blocks 😂) HepMC3 easiest way for MCs to ROOT output, soon-ish support for parallelized standardized I/O via HDF5

J. R. Reuter, DESY

Miscellaneae: event formats, computing, software frameworks

babayaga*†	baurmc [†]	bhlumi*†	crmc [†]	evtgen	geni
gosam [†]	guinea-pig*	t herwig3	herwigpp [†]	kkmcee*	madg
photos	pythia6 [†]	pythia8	sherpa	$starlight^{\dagger}$	supe
tauola [†]	vbfnlo	whizard			
"Generator	tools"				
agile⊺	alpgen™	ampt	apfel⁺	ccs-qcd ^T	chapl
collier [†]	cuba†	dire [†]	feynhiggs†	form [†]	hepmc
hepmc3	heppdt	hoppet [†]	hztool [†]	lhapdf	lhapd
looptools	openloops	professor [†]	prophecy4f [†]	qd†	qgraf
2.14			thered	unigent	

Generator performance: every generator has different bottlenecks, hence different needs / ways for solution

Conclusions & Personal Thoughts

- Three multi-purpose MCs for e e Higgs factories: MG5_aMC@NL0, Sherpa, Whizard Ş
- Ş Beam spectra mostly supported: Gaussian vs. parameterized vs. sampled (sampled is most versatile)
- Ş QCD perturbatively in a very good shape (fixed-order NNLO/NNNLO, NLL showers, NNLL/NNNLL resummation)
- Ş Fragmentation has no new ideas since decades \Rightarrow Will become a problem for large hadronic data sets
- Ş No a priori superior framework for NLO QED: collinear vs. soft (ePDFs vs. YFS); needs work and data (sic!)
- Ş Exclusive QED higher-order simulations: YFS vs. QED shower w/ matching still in infancy
- Ş Big challenge will be NNLO QED / NNLO EW
- Ş Dedicated MCs exist and needed for luminometry: BabaYaga [BHLumi/BHWide],
- Ş Uncertain future of Krakow / LEP legacy MCs (will there be ECRs for those? maintenance?)
- Ş Event formats are modern and efficient; but still do not contain spin correlations
- Ş Software frameworks in good shape; efforts on efficiency

J. R. Reuter, DESY

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023

Conclusions & Personal Thoughts

- Three multi-purpose MCs for e e Higgs factories: MG5_aMC@NLO, Sherpa, Whizard Ş
- Ş Beam spectra mostly supported: Gaussian vs. parameterized vs. sampled (sampled is most versatile)
- Ş QCD perturbatively in a very good shape (fixed-order NNLO/NNNLO, NLL showers, NNLL/NNNLL resummation)
- Ş Fragmentation has no new ideas since decades \Rightarrow Will become a problem for large hadronic data sets
- Ş No a priori superior framework for NLO QED: collinear vs. soft (ePDFs vs. YFS); needs work and data (sic!)
- Ş Exclusive QED higher-order simulations: YFS vs. QED shower w/ matching still in infancy
- Ş Big challenge will be NNLO QED / NNLO EW
- Ş Dedicated MCs exist and needed for luminometry: BabaYaga [BHLumi/BHWide],
- Ş Uncertain future of Krakow / LEP legacy MCs (will there be ECRs for those? maintenance?)
- Ş Event formats are modern and efficient; but still do not contain spin correlations
- Ş Software frameworks in good shape; efforts on efficiency

Deep concern that the gap until the first data is too large for theory community

J. R. Reuter, DESY

A lot remains to be done (e.g. exclusive simulations), but we are a generation away: there is plenty of too much time

ILD Meeting, 4.7.2023 & FC@DESY, 7.7.2023