Full-Geometry Fast Calorimeter Simulation and Steps towards a Back Transformation

Julian Utehs In collaboration with Stan Lai and André Wilhahn

II. Physikalisches Institut, Georg-August-Universität Göttingen CALICE Collaboration Meeting

September 27 - 29, 2023

Julian Utehs, André Wilhahn, Stan Lai

1 Introduction

2 Simulation

- One-step Simulation (OSS) of 3 Spatial Dimensions
- Two-step Simulation (TSS) followed by Angular Allocation

3 Back Transformation

1 Introduction

2 Simulation

- One-step Simulation (OSS) of 3 Spatial Dimensions
- Two-step Simulation (TSS) followed by Angular Allocation

3 Back Transformation

4 Conclusion

The AHCAL Prototype

- Consists of 38 active layers of 24×24 scintillator tiles $(3 \times 3 \text{ cm}^2)$ embedded in stainless-steel absorber structure with analogue SiPM read-out electronics
- Full simulation on particle level is not data-driven and might need many adjustments
- Investigation of data-driven fast calorimeter simulation based on pion showers ⇒ Aim: Better performance and higher accuracy

Characterisation of Shower Events

The **pion shower** disperses in a cone-shaped manner. Hence, it is divided into three parts for a parameterisation:

- Longitudinal
- Radial
- Angular

Introduction

Data Preparation

- Consider differences in energy deposition between single and average shower instead of absolute energies
- Investigate energy deposition relative to shower start layer and center of gravity

Kernel Density Estimators

- Want to find PDF of dataset $x_1, x_2, ..., x_n$
- \bullet Define Kernel Density Estimator (KDE) with bandwidth h as:

- PDF = sum of all Gaussian kernels
- Choice of bandwidth determines smoothness of PDF
- Apply KDE of energy differences simultaneously on layer groups

Julian Utehs, André Wilhahn, Stan Lai

Fast Calorimeter Simulation

1 Introduction

2 Simulation

- One-step Simulation (OSS) of 3 Spatial Dimensions
- Two-step Simulation (TSS) followed by Angular Allocation

3 Back Transformation

4 Conclusion

Cuts and Configurations

\mathbf{Cuts}

- Applied particle identification using BDT-techniques to remove beam contamination
- Exclude first physical AHCAL layer in order to minimise uncertainty in shower start finding algorithm
- Apply low-energy cut to remove muons from dataset
- Exclude events starting in layer 11 or later to minimise leakage

Cuts and Configurations

Configurations

- Layer Groups {1-2, 3-4, 5-6, 7-8, 9-12, 13-16, 17-24, 25-40}
- Angular Groups $\{\frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}, \frac{4\pi}{4}, \frac{5\pi}{4}, \frac{6\pi}{4}, \frac{7\pi}{4}, \frac{8\pi}{4}\}$
- Radial Groups {25, 50, 75, 100, 150, 200, 300, 400} (in mm from Center of Gravity)

Mean Energy per Bucket

Energy Differences per Bucket in One-step Simulation of 3 Spatial Dimensions

• One-step Simulation of 3 Spatial Dimensions shows good agreement

Julian Utehs, André Wilhahn, Stan Lai

Fast Calorimeter Simulation

September 27 - 29, 2023 12 / 27

Pros and Cons

\mathbf{Pro}

- One-step Simulation of 3 Spatial Dimensions possible
- Directly usable values

\mathbf{Con}

- Analysis takes quite a time (~ 100 seconds per 100 events ⇒ 3.5 seconds per 100 events)
- Low number of hits in the buckets \Rightarrow Low statistics!

Idea:

Why not use a Two-Step Simulation: First calculate the Radial-Longitudinal part and allocate the angular part later?

Two-step Simulation

One-step Simulation:

Two-step Simulation:

Energy Differences per bucket in Radial-Longitudinal Analysis

• Radial-Longitudinal Simulation shows good agreement

Energy Density Differences in Ring 2 Layer Group: 1

Energy Differences - One-step Sim. compared to Two-step Sim.

• One-Step Simulation and Two-step Simulation are not in agreement

Problems

- Angular Part corresponds to a gaussian curve
- Angular Part in combination with small radii can easily be zero

Problem Verification - Energy Differences per bucket Two-step Simulation in comparison to One-step Simulation reduced to 4 Angles

• Comparison of artifically reduced OSS is similar to TSS

Problem Verification - Energy Differences per bucket Two-step Simulation in comparison to One-Step Simulation reduced to 2 Angles

- OSS artificially reduced to 2 Angles is even more similar
 - \Rightarrow A lost Correlation is not reversed easily

Energy Bucket 3 (relative)

Pros and Cons

\mathbf{Pro}

- Radial-Longitudinal Simulation with added Angular Part was implemented
- Faster

\mathbf{Con}

- Results in Energies below zero (!)
- It does not seem to fit very well (maybe we have to include the gap rejection for the event selection again)

Idea:

Why not decrease executing time for full ARL by using a Lookup table?

1 Introduction

2 Simulation

- One-step Simulation (OSS) of 3 Spatial Dimensions
- Two-step Simulation (TSS) followed by Angular Allocation

Back Transformation

4 Conclusion

First Back Transformation

- One-step Simulation Data can be used to obtain slcio Files again (details to this process in the talk from André)
- slcio Files can be used to obtain Root Files again
- First approach equally distributes the energy in the corresponding hits

Problems with the Back Transformation

Number of Hits in Bucket 2

- Back Transformation does visually not show good agreement with Data
- Energy is equally split into the number of hits of every single Bucket
- Number of Hits does therefore not correlate with the input

Number of Hits in Bucket 16

1 Introduction

2 Simulation

- One-step Simulation (OSS) of 3 Spatial Dimensions
- Two-step Simulation (TSS) followed by Angular Allocation

3) Back Transformation

4 Conclusion

Summary of Simulation

Pros:

- One-step Simulation does fulfill the requirements to be used as an implementation
- Back transformation is working in principle
- One-step Simulation might has several additional improvements, so that a much faster simulation can be implemented

Cons:

- One-step Simulation is still not a Fast Calorimeter Simulation
- Two-step Simulation is neither possible nor easy to handle
- Back Transformation needs adjustments in order to split the energy correctly into the hits
 - \Rightarrow Whether this is possible, is under investigation

Outlook

- Improve the calculation time of the One-step Simulation further
- Implementing a working example for a Back Transformation
- Comparison to already established Monte-Carlo Simulation

3D Scatter Plot of Back Transformed Event

Questions?

Questions?

					.:~!77?????!!^:.			
					. ^!?AndreYYYYYYYYYJ?!:			
:::::					^7JY5YYY5YYYYJYYY55YYY5YJ!:			
.:^^~~~`::::::					:?Y5YYYYY?!^::~!?Y5YYY5Y7.			
. ^ 1 ? ? ? ? ? ? ? ? ? ? ?					.7YYYYYY?^.		:~JY5555Y~	
^??????!!	7????7:	!?777:			.754444	?:	<u>^!!!!!</u> :	
17777~.	.^7??J?:	^?????7	YBGP5:		:::?5YYYY7	^!7???7 [^] .	.^!7??7!^.	
^????^	.!!~^.	.??????~	YBBBG:	YBGGG!	!5YYYY7 .	75GGG5YPGGPJ:	.?5PGP5PGGP5?.	
7???7		1777:1777.	YBBBG:	JBBBB7	.JYYYYJ.	.YGGGG?. :YGGGG?	^PGGGP: !PPPG5:	
. ????~		^???~ :???!	YBBBG:	JBBBB7	:YYYYY?	?GGGGGGJ!7!JYYYYY	JYYYY? : PPPPGY	
: ????~		.????^^^????:	YBBBG:	JBBBB7	:YYYYY?	?GGGGGG~ 7YYYYJ	JYYYYJ777?PPPPGY	
.7???!		7????JJJ????7	YBBBG~~~!7:	JBBBB7	.JYYYYJ.	: 5GGGG7 . YGGGG !	^PGGGP: !PPPGP^	
~????:	:??7!:	~????7^^^:::7???^	YLaiBBBBBBA^	YBBBB7	!5YYYY7 .	.75GGGP5PGGPJ^	:?PGGP?JGGPP?:	
.7????^.	^??????.:	????. :????.	5BGGPP55YJ:	~!!~~:	:::?5YYYY7	^!?JJJ7~:	.~7?!7?!^.	
. 177777111	17????7. 7	7???	. ~ ~ ~ ^		.754444	?:		
:!7??JJJ????7^ :! ^{~~~} :::::					.7YYYY	YY?^.	:~JY5555Y~	
.:^~~!!~~^::::					:?Y5YYYYY?!^::~!?Y5YYY5Y7.			
					^7JY5YYY5YYYYJulian5YYY5YJ!:			
					.^!?JYYYYYYYYYYYYYYYYI::			
					.:~!77????7!!^:.			

Julian Utehs, André Wilhahn, Stan Lai

Backup Slides

Motivaton for Fast Simulation

- CPU consumption of MC simulations increases with occupancy/granularity
- $\bullet~{\rm Up}$ to $90\,\%$ of calculation time is needed for the calorimeter
- Saving of computational resources will become necessary sooner or later

Kernel Density Estimators

• Generalise to d dimensions:

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} |\mathbf{H}|^{-1/2} K\left(\mathbf{H}^{-1/2}(\mathbf{x} - \mathbf{x}_i)\right)$$

- **x**: *d*-dimensional data vector; **H**: *d* × *d* bandwidth matrix
- Have chosen $\mathbf{H} = h^2 \mathbf{C}$ where \mathbf{C} is the covariance matrix of the dataset

Problem Verification - Energy Differences per bucket Full ARL in comparison to Full ARL Reduced to 2 Angles

• Full ARL artificially reduced to 2 Angles (Mean value of 4 angles)

Problem Verification - Energy Differences per bucket Full ARL in comparison to Full ARL Reduced to 4 Angles

• Full ARL artificially reduced to 4 Angles (Mean value of 2 angles)

Julian Utehs, André Wilhahn, Stan Lai

Fast Calorimeter Simulation

Problem Verification - Energy Differences per bucket 'RL + KDE Angular' in comparison to 'Full ARL with calculated 2 Angles'

• Full ARL calculated only with 2 Angles is also not in agreement

