High-Performance Data Readout and the HGCAL Electronics

Fabian Hummer fabian.hummer@kit.edu

Contribution to the CALICE Collaboration Meeting

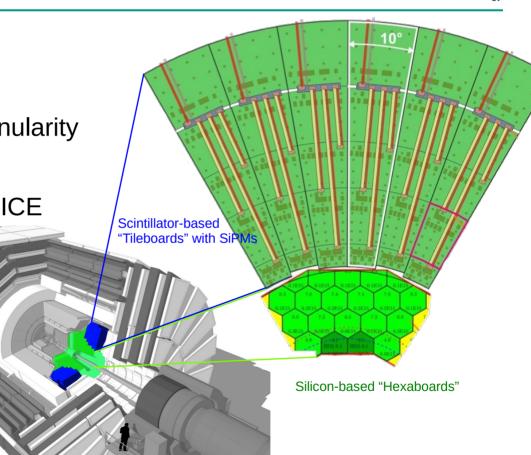
FZU Prague, Sep 27, 2023

1

CMS High Granularity Calorimeter

Two main challenges:

- Event pileup 3-5 times higher than LHC
 - \rightarrow Particle flow calorimeter with high granularity
 - \rightarrow > 6 Mio channels


3D shower reconstruction based on CALICE research

Radiation environment

 \rightarrow Silicon-based "hexaboards" for high-radiation environment

 \rightarrow SiPM-on-Tile "tileboards" for lower-radiation environment

Technology based on CALICE AHCAL

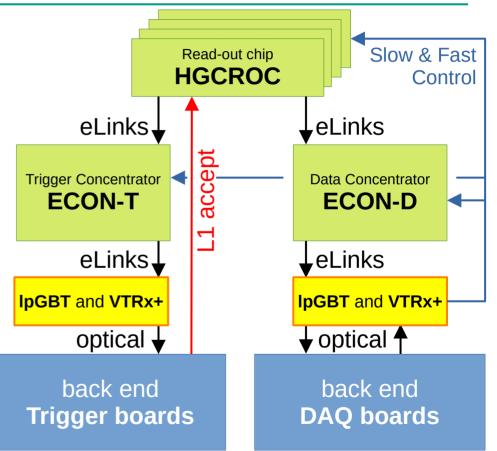
Front End Challenges

- Total of approx. 6M channels (hexaboards) + 240k channels (tileboards)
 - Full event size 2.5 3.5 MB (both endcaps)
 - Separate between trigger and data path
 - Event buffer in ROC > 12.5μ s latency for L1 trigger decision
- Active CO₂ cooling to -30°C to mitigate effects of radiation damage
 - Power budget limited by cooling power (electronics will dissipate ~125kW)
- High density of readout channels and electronics (especially for hexaboards)
 - Silicon sensor cell size 0.5...1cm²

\rightarrow Scale and density of front end poses an engineering challenge!

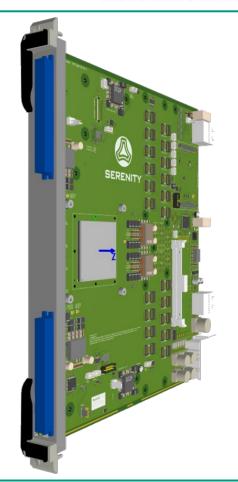
How to get the data out of the detector

- Approx. 100k HGCROCs
- Separate DAQ and Trigger path, approx. 8000 optical links to FE each
- Trigger Path:
 - Total average event rate 40Tb/s
- DAQ Path:
 - 12Tb/s at 750kHz L1 accept rate
- Additional components: IpGBT, GBT-SCA, DC/DC, fan-out, ...
- (Almost) same FE for hexaboards and tileboards \rightarrow same backend



The Versatile Link plus Environment

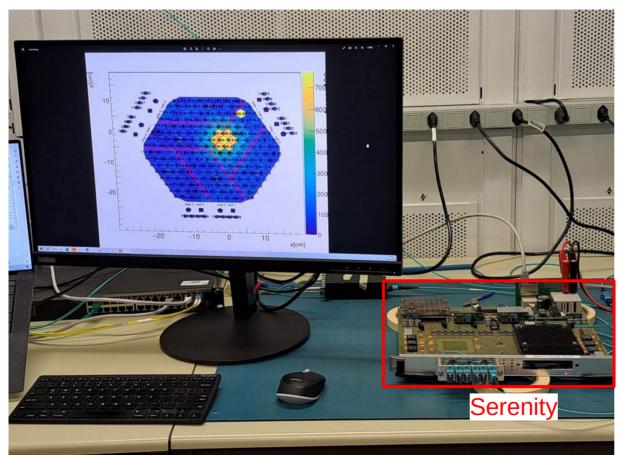
- Common ASICs for phase II of CMS and ATLAS
 - Dev. boards + tech support at CERN
 - Radiation hard, wide temperature range
- VTRx+ \rightarrow optical transceiver
 - 4x 10Gb/s uplink
 - 1x 2.56 Gb/s downlink
- **IpGBT** (low power gigabit transceiver) fans out to eLinks, clocks, slow and fast control
 - 10Gb/s uplink, 2.56Gb/s downlink
- **GBT-SCA** \rightarrow Slow control adapter
 - Only used in tileboards


i22

What to do with the data on the other side?

Serenity-S1 FPGA card:

- Generic readout card for various CMS subsystems
 - Links, FPGA and firmare configurable for each use case
- More than 700 cards will be used in HL-LHC upgrade
 - Approx. 300 for HGCAL (for Trigger and DAQ)
- Each Serenity board houses
 - VU9P or VU13P FPGA
 - 124 fiber optical links up to 25Gb/s (Rx and Tx each)
 - Zynq Kria System-on-Module
- Developed in collaboration between KIT and Imperial College London



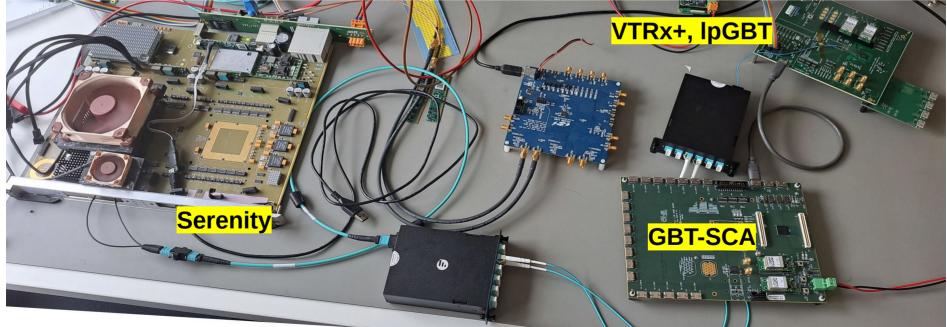
i2

The Serenity in action...

Two beam tests at SPS this year:

- Two hexaboards with the complete pre-series front end
- Full readout chain until the Serenity
- First time this system was in a beam test!
- \rightarrow a huge success for HGCAL!

...requires a large team to get working!


27.09.2023 **High-Performance Readout Systems for Future Calorimeters**

HGCAL activities at IPE / KIT

- Building a test stand for the full readout chain: tileboard \rightarrow Serenity
- Currenlty preparing FW and SW for slow control using VLDB(+) boards
- Close collaboration with DESY (front end), CERN and ICL (back end)

CALICE plans at IPE / KIT

- Simulations on future detectors and development of reconstruction algorithms
 - Determine performance requirements for the new AHCAL readout chain
 - Which performance parameters drive energy resolution? e.g. timing, granularity, ...
- Develop a new readout chain & local powering for the AHCAL
 - Fit for linear and circular colliders
 - Which readout electronics? Data rates? Triggering capabilities required?
- IPE has extensive expertise in development of digital and analog electronics, System-on-Chip and firmware

