Silicon Sensor Characterization and Radiation Hardness Studies

Leena Diehl on behalf of the CMS Collaboration

CALICE Collaboration Meeting September 27, 2023

September 27, 2023

- Reminder of HGCAL
- Silicon Sensor Characterization: ARRAY-System
- ► HGCAL Silicon Sensor Status: Production
- Bulk Radiation Hardness Studies: Full Silicon Sensors and Test Structures

Reminder of HGCAL

- High Granularity Calorimeter (HGCAL) will replace the current CMS Endcap Calorimeter for the HL-LHC
- Silicon sensors will be used for the electromagnetic section and high radiation regions of the hadronic section
- \triangleright ~620 m² silicon sensors produced on 8-inch wafers
- Three different thicknesses: 300 μm, 200 μm (Float zone) and 120 μm (Epitaxial)
- Fluences of up to 1e16 n_{eq}/cm²

Key Parameters:

Coverage: 1.5 < $|\eta|$ < 3.0 ~215 tonnes per endcap Full system maintained at -35°C ~620m² Si sensors in ~30000 modules ~6M Si channels, 0.5 or 1cm² cell size ~400m² of scintillators in ~4000 boards ~240k scint. channels, 4-30cm² cell size Power at end of HL-LHC: ~125 kW per endcap

HGCAL: Silicon Sensors Reminder

4k sensors*

*needed in the final detector

Low-Density "Partial sensor" example from "Multi-Geometry" sensor

High-Density "Partial sensor" example from "Multi-Geometry" sensor

- Silicon sensors produced by Hamamatsu (HPK)
- Hexagonal sensor geometry: Largest tile-able polygon
- Partial sensors to tile border regions
- Thickness and granularity adapted to expected fluence

September 27, 2023

ARRAY System: Motivation

- System needed for electrical sensor characterisation in prototyping phase and for quality control in mass production (IV, CV, V_{BD}, V_{FD}, C_{FD})
- Measurements with accuracy of O(100pA) and few pF for unirradiated samples, cell currents up to 10µA for irradiated sensors

- Need to bias all pads during testing
 → Probe-card based system
- System to switch between pads
 - \rightarrow Switching matrix
- Probe cards adaptable to sensor geometry
 → not limited to HGCAL
- Probe card in production for CALICE SiW-ECAL sensor layout

ARRAY System Publication

ARRAY System: Motivation

- System needed for electrical sensor characterisation in prototyping phase and for quality control in mass production (IV, CV, V_{BD}, V_{FD}, C_{FD})
- Measurements with accuracy of O(100pA) and few pF for unirradiated samples, cell currents up to 10µA for irradiated sensors

- Need to bias all pads during testing
 → Probe-card based system
- System to switch between pads
 - \rightarrow Switching matrix
- Probe cards adaptable to sensor geometry
 → not limited to HGCAL
- Probe card in production for CALICE SiW-ECAL sensor layout

ARRAY System Publication

ARRAY System: Schematics

- Mother-daughter card system of switch card and probe card
 - Switch card: Large array of multiplexers that controls measurement
 - Probe card: Passive device, connects sensor using spring loaded pins

ARRAY System: Position Accuracy

- Spring loaded, gold plated pins with 1.4mm travel, 240µm radius at tip
- Through-hole pins soldered into PCB by hand
- Yellow stiffener acts as jig keeping pins straight during assembly
- Precision good enough for contact pads of 1 mm

ARRAY System: ECAL Probe Card

Lumical 6-inch 256-cell probe card inside PM5 probe station platen at Tel Aviv University

September 27, 2023

ARRAY System: ECAL Probe Card

- Probe card design finished summer 23
- Currently in production at CERN

Tel Aviv University Probe Station

Probe cards will be tested and used at Tel Aviv university and Valencia university

September 27, 2023

HGCAL Silicon Sensors: Status

- Production started for the full low density sensors
- ▶ Production Readiness Readiness review for full high-density and partial sensors next month
- Sensors measured at five sensor quality control sites (CERN, FSU, NCU, TTU, IHEP)
- Electrical characterization performed for 5% of all sensors in Production

Acceptance criteria Y acceptance criteria • Total current (over all cells and guard ring) at 600V below 100µA • Total current not increasing by x2.5 from 600V to 800V • Not more than 8 pads, or two neighbouring pads, with: • Pad current at 600V above 100nA or Pad current increasing by x2.5 from 600V to 800V if 1600 > 10nA or Pad current above 25nA if 1600V < 10nA</td> CV acceptance criteria • Depletion voltage below a thickness-dependent limit (120µm; 70V, 200µm; 160V, 300µm; 370V)

- Depletion voltage spread within 10%
- Thickness variation below 10μm

September 27, 2023

HGCAL: Example IV Grading

- ▶ 300µm LD sensor from Pre-Series Shipments
- Passes all IV grading criteria for total current and per-pad current

Production: Status

- Delivered Production Sensors: 300µm LD full sensors
- Status: Delivered by August 23, Tested before Sep 4 2023
- CMS-tested: No hard failures (= high absolute current, high # of bad cells)
- ► 4 HPK failed sensors 3 @ FSU, 1 @ TTU

		HGCAL SQC-sites				
	HPK	CERN	FSU	NCU	TTU	CMS Total
Delivered	-	333	615	73	566	1587
Next deliveries	-	~650	25	1142	948	~2765
Tested sensors	824	24	46	0*	33(3)	103
Tested batches	15	1	18	-	10	29/67
Failed sensors	4	0	0	-	1	1/103
l _{tot} (800 V) >	4	-	-	-	1	1/103
2.5*I _{tot} (600 V)						
Yield [%]	99.5	100	100	-	97.0	99.0

Parenthesis: Accepted after remeasurement

* NCU probe station commission in progress

Quality Control: Progress and Plans

- Start with 300µm sensors, as highest number of sensors is needed
- HPK delivery started slow, but they catched up with large deliveries now
- 1 more month to QC the pre-production

- Remaining 95% (24726 sensors) sampled with 5% rate 1236 tested sensors, 2/day at 3 sites = 206 days = 42 weeks
- 11 FTE months required for 21 remaining months of deliveries

Radiation Hardness Studies: Full Sensors

- Sensors irradiated at Rhode Island Nuclear Science Centre (RINSC), US
- Temperature-controlled chuck, enables measurements at -40°C as well as annealing at elevated temperatures
- Measurement of IV and CV of each individual cell along with total current measurements
- Example: IV measurement of a Low Density 200µm sensor irradiated to 3.7e15 n_{eq}/cm²

Qualification of RINSC for HGCAL

Radiation Hardness Studies: Full Sensor Leakage Current

- Observed (18 ± 6)%
 variation in per-cell leakage current across main sensor
- Consistent profiles between sensors irradiated together in same irradiation round
- Hypothesis: Fluence profile within the beam port

September 27, 2023

Radiation Hardness Studies: Full Sensor Damage Rate

- Use 3 neighboring full cells in the current (fluence) maximum within a sensor to estimated current related damage rate
- Compatible results using the total current

$$\frac{I}{V} = \alpha \cdot \Phi$$

Extracted damage rate:

 $\alpha_{600V}(20^{\circ}C) = (7.0 \pm 0.3 (\text{fluence, annealing}) \pm 0.4 (\text{chuck temperature variation})) \text{A/cm}^2$

Silicon Test Structures: Diode Measurements

- Hexagonal sensor from circular wafer
- Remaining space used for small sized test structures, e.g. diodes
- Diodes are glued and wirebonded to a PCB for characterization, connectable via SMA Full wafer silicon sensor

September 27, 2023

Radiation Hardness Studies: Measurement Setup

- New characterization setup built and commissioned
- ► Temperature: -20°C, PCB placed on a cooled copper holder inside an enclosed box
- ▶ IV, CV and Transient Current Technique (TCT) measurements (1064nm laser)
- ► Laser calibrated to 40MIP equivalent using unirradiated 300µm sample

September 27, 2023

Radiation Hardness Studies: Diodes Leakage Current

- Increase of leakage current with fluence
- Strong temperature dependence of current: IV measurements were used to tune and qualify the true temperature of the sensors in the new setup by comparison with bare measurements in an established setup

Radiation Hardness Studies: Collected Charge

- 2 samples per fluence: Consistent results
- Constant increase of charge with voltage: Saturation only for 120µm sensor irradiated to 6e15
- Sensors will be used for annealing study: Room temperature and 60°C annealing

Radiation Hardness Studies: Collected Charge

Dotted lines: Collected charge measured in unirradiated sensors of the three thicknesses

Decrease of charge with fluence, consistent results from two irradiation campaigns

Thinner sensors have better radiation hardness

September 27, 2023

Radiation Hardness Studies: Charge Collection Efficiency

600V

 Before beneficial annealing: 50% efficiency at 600V still up to 3e15 n_{eq}/cm² for 200µm and up to 1.2e16n_{eq}/cm² for 120µm

- Layout optimization ongoing: More 200µm and 300µm sensors?
- Possibility of High Density 200µm sensors

Conclusions

- HGCAL entered the production phase for LD sensors (upcoming PRR for HD and partial sensors) and will perform quality assurance at five different institutes
- Adaptable switch- and probe card system allows for electrical characterization of individual cells for various sensor types
- New probe card soon to be delivered for CALICE SiW-ECAL
- Radiation hardness studies suggest that silicon sensors in HGCAL will survive and perform well until the end of HL-LHC
- New irradiated test structure results help to evaluate the optimization of the layout and positioning of the different thicknesses in the final detector