

LUXE-NPOD Calorimeter Options

Nicolò Trevisani

KIT - Karlsruhe Institute of Technology

CALICE Collaboration Meeting 27-29 September 2023

2

LUXE: Laser Und XFEL Experiment

- XFEL provides a 16.5 GeV electron beam and bremsstrahlung photons
- The electrons (or photons) and the laser photons "collide" producing high-intensity interactions
- Currently a project, first data foreseen in 2027

Overview of the LUXE Physics Program

LUXE:

- Compare the predictions of full and perturbative QED in the Schwinger limit with the experimental results
- Measuring the e⁺e⁻ flux produced by photon-laser or electron-laser interaction

Eur. Phys. J. Spec. Top. 230, 2445-2560 (2021)

Phys. Rev. D. 106.115034 Beam electron Free GeV photons

LUXE-NPOD:

- Collide a beam of 16.5 GeV electrons with the laser
- With the correct choice of the <u>laser parameters</u>:
 - The laser acts as a 'solid' dump for electrons, producing O(GeV) photons
 - These photons see the laser as a transparent medium and can reach the physical dump

Overview of the NPOD Project

Phys. Rev. D. 106.115034

Nicolò Trevisani (KIT) - nicolo.trevisani@kit.edu - LUXE-NPOD Calorimeter Options - CALICE Collaboration Meeting 27-29 September 2023

Our Criteria to Define the Calorimeter Requirements

To guide us in the choice of the LUXE-NPOD detector, we consider:

- Expected signal kinematical distributions
- Residual backgrounds reaching the detector
- Existing detectors or prototypes fulfilling the requirements of signal efficiency and background rejection
- Simulations to test the different options, in terms of detectors and reconstruction algorithms

Signal Acceptance vs Decay Volume Length

- Photons produce ALPs in the first mm of the dump
- Boosted $c\tau_{a/\phi}$ randomly drawn from exp(-L/L_{a/\phi}) distribution
- ALP decay inside the decay volume
- $E_{y} > 0.5$ GeV, no photons separation requirements
- Shorter decay volumes require smaller detector surface
 - But also better photons shower separation

LUXE-NPOD (work in progress) Entries / 0.0100 m 6.0 F.0 F.0 F.0 m mass = 0.346737 - coupling = 5.25e-06 - decay volume = 2.5 mass = 0.346737 - coupling = 5.25e-06 - decay volume = 2.0 mass = 0.346737 - coupling = 5.25e-06 - decay volume = 1.5 mass = 0.346737 - coupling = 5.25e-06 - decay volume = 1.0 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 r_{max} (m)

Signal Acceptance vs Minimum Photons Distance Resolution

- Photons produce ALPs in the first mm of the dump
- Boosted $c\tau_{a/\phi}$ randomly drawn from exp(-L/L_{a/\phi}) distribution
- ALP decay inside the decay volume
- $E_{y} > 0.5$ GeV, testing different photons separation requirements
- We fix the decay volume to 1 m
 - Worst case scenario, photons distance wise

Nicolò Trevisani (KIT) - nicolo.trevisani@kit.edu - LUXE-NPOD Calorimeter Options - CALICE Collaboration Meeting 27-29 September 2023

Expected Results vs Decay Volume Length

Limits assume zero background. No photons shower separation requirements.

Expected Results vs Detector Transverse Size

We fix the decay volume to 2.5 m (worst case scenario)

LUXE-NPOD (work in progress)

Phys. Rev. D. 106.115034

Expected Results vs Minimum Photons Distance Resolution

We fix the decay volume to 1 m (worst case scenario)

Phys. Rev. D. 106.115034

Expected Background Reaching the Detector

We expect some neutrons reaching the detector

- A detector able to distinguish neutrons from photons showers is needed to reject "fake" signals
- Here we consider a detector with radius R = 1 m
 - Number of background particles reaching the detector may be slightly overestimated

Summary of Detector Requirements

Detector physics goals:

- Signal efficiency
 - Photons shower separation (~ 2 cm)
- Suppression of residual backgrounds
 - Shower shape determination (neutrons)
 - Good time resolution (< 1ns) (neutrons)
- Precise reconstruction of ALP invariant mass
 - Good resolution of photons direction and energy (in the range of the few GeV)
 - Non-resonant photons rejections
- A small detector (r ≤ 30 cm) will also ensure a high signal acceptance
- \rightarrow Ideal candidate: tracking calorimeter

10.1088/1742-6596/1162/1/012012

Fulfilling All the Requirements: ALICE FoCal

High-resolution electromagnetic silicon-tungsten calorimeter using both low-granularity silicon pads and high-granularity silicon pixel layers:

- Proposal for ALICE forward calorimeter at HL-LHC
- 20 layers of W-plates, each with a thickness of one radiation length $X_0 = 3.5$ mm
- Main focus on discriminate single photons from pairs of photons from $\pi^0 \rightarrow \gamma \gamma$
 - Great shower resolution, also in case of close-by photons (closer than 5 mm)
 - Thanks to the small Molière radius of tungsten ($r_M = 0.93$ cm)
- ALPIDE monolithic active pixel sensor
- Transverse size is approximately 90 cm × 90 cm
 - *LHC-like* design: Minimum radial distance from the center is 4.5 cm

Fulfilling All the Requirements: ALICE FoCal

https://doi.org/10.22323/1.414.0317

14

FoCal-E

- 20 tungsten layers, with thickness of $3.5\,\mathrm{mm}=1\,\mathrm{X}_0$
- 18 layers of silicon pad sensors, pad size $\approx 1 x 1 \, cm^2$
- 2 layers of silicon pixel sensors, pixel size $\approx 30\,x\,30\,\mu m^2$

FoCal-H

- length of $110\,\mathrm{cm}$
- copper "strawtubes" with 2.0 mm diameter
- scintillating fibre with $\approx 1.1\,\mathrm{mm}$ diameter

Nicolò Trevisani (KIT) - nicolo.trevisani@kit.edu - LUXE-NPOD Calorimeter Options - CALICE Collaboration Meeting 27-29 September 2023

The ALICE Forward Electromagnetic Calorimeter seems to fulfill all our requirements, but:

- It is probably optimized for a different photons energy range
 - We have to check it
- The technology is expensive [LHCC-I-036]
 - The estimated total costs is about 9 MCHF
- Prototypes have been built
 - We can try to see if they are available and suit our needs
- We can also consider a smaller detector, based on the same design and technology

	Cost (kCHF)
tungsten	500
mechanics	500
silicon sensors (pads)	2000
pad power and readout	800
ALPIDE+PCB/flex	750
ALPIDE power and readout	1150
infrastructure	200
cooling	1000
support + integration	1200
beampipe	800
total detector cost	8900

High resolution lead/scintillating-fibre calorimeter

- Backward calorimeter used by the H1 experiment at HERA
- Tested on electrons in the energy range 2-60 GeV
- Energy resolution: $\sigma_{\rm E}/E = 7.1\%/\sqrt{(E/GeV)} \oplus 1.0\%$
- Spatial resolution for impact point at the center of a cell 4.4 mm /√(E/GeV) + 1.0 mm
- Time resolution better than 0.4 ns
- Design not optimal for shower-shape discrimination
 - Possibly not the ideal design for neutron rejection

One module of the H1 SpaCal is currently tested at KIT to assess the status of the fibres and verify the performances

- New SiPM installed
- Managed to read out a signal from a radioactive source
- The module currently inspected is a spare one, so never irradiated
 - \circ \quad Good to set a performance baseline
 - But we will need irradiated modules to asses the radiation damage

CALICE SiPM-on-tile calorimeter

https://doi.org/10.1088/1742-6596/1162/1/012012 https://doi.org/10.1103/RevModPhys.88.015003

Sampling hadron calorimeter of steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers as active material

- Sampling structure: 1.24 radiation lengths X₀ per layer and effective Molière radius of 2.47 cm
- Active elements: 3 × 3 cm² plastic scintillator tiles
- Energy resolution: $\sigma_E / E = 21.9\% / \sqrt{(E/GeV)} \oplus 1.0\%$
 - Tested on positrons in the energy range 1-50 GeV
- Currently tested at Mainz, as a candidate for the SHADOWS experiment

At KIT, we are setting up a general-purpose Geant4 simulation framework to deal with different detector layouts **Program execution flowchart**

- User-friendly python interface to interact with the C++ backend
- Synergy with batch submission system
- Currently possible to configure sampling calorimeters
 - SpaCal layout implementation in progress Ο
- Inputs can be particle gun or simulated signal events, provided in HEPMC format
 - Plan to include h5 as input format 0

Reconstruction Algorithm

Use a neural network to reconstruct the two photons momenta and the vertex

- Loss: mean squared error between predicted/actual track lines
- Currently testing existing NN architectures (<u>DeepJetCore</u>, <u>GravNet</u>)

Conclusions

The effort to choose the LUXE-NPOD detector is ramping up:

- Understand what we need in terms of signal efficiency and background rejection
- Considering existing technologies and available detectors or prototypes
- Moving forward with a simulation framework
 - Using input from signal samples
- Starting testing algorithms for events reconstruction
 - \circ \quad Get photons momenta and vertex
 - Reject neutrons

BACK-UP

Process	Timescale
Compton scattering: $e_V \rightarrow e_V + \gamma$	$\tau_{\gamma} = 1/\Gamma_{\gamma} \sim O(10)$ fs
Breit-Wheeler pair production: $\gamma \rightarrow e_V^+ + e_V^-$	$\tau_{ee} = 1/\Gamma_{ee} \sim O(10^4 - 10^6)$ fs
Laser pulse duration at LUXE	t _L ~ <i>O</i> (10 - 200) fs
Time scale of LUXE's 800 nm	$\sim 1/\omega_L \sim 0.4 \text{ fs}$

$1/\omega_L \ll \tau_\gamma \lesssim t_L \ll \tau_{ee}$

- Short τ_{γ} = plenty of time for electrons to produce photons \rightarrow electrons see the laser as a thick target
- Long τ_{ee} = long timescale for a photon to produce electron pairs \rightarrow photons see the laser as transparent

Expected Background Reaching the Detector

We expect some neutrons reaching the detector

• A detector able to distinguish neutrons from photons showers is needed to reject "fake" signals

Reconstruction Algorithm: Current Status

Current implementation does not properly reproduce the inputs:

- Mean values are ok, spread is underestimated. A few tests needed to fix this:
 - Change learning rate, node counts, and batch sizes
 - Include uncertainties in the loss function

$$d_i = \frac{\sum (\vec{p_i} - \vec{t})^2}{\sigma^2} + \ln\left(\sigma^2\right)$$

- Next steps:
 - Allow an arbitrary number of photons using object condensation
 - Classify into photons and neutrons, using shower shape information

