

Sci-ECAL Technological Prototype: Beam Test@CERN and Status of ECAL Data Analysis

Jiaxuan WANG

University of Science and Technology of China

On behalf of the Sci-ECAL working group

CALICE Collaboration meeting from Sept 27-29, 2023

Introduction

- > CEPC: future lepton collider experiment
 - Precision measurements of the Higgs/EW/QCD
 - Calorimeter system requirement
 - 3-4% invariant mass resolution for two-jets system
 - Jet resolution ~ $30\%/\sqrt{E}$

- SiWECAL, Sci-ECAL, DECAL...

h⁰

Sci-ECAL technological prototype

- Scintillator-based electromagnetic calorimeter(Sci-ECAL)
 - Sampling calorimeter with sandwich structure
 - ECAL basic unit(EBU)
 - scintillator strips + Hamamatsu SiPMs + SPIROC2E chips -
 - tungsten-copper alloy (mass fraction: 85:15) board -

scintillator strip

SiPM

- 32 EBU layers, total radiation length ~ 23 X_0

Scintillator (5mm*45mm*2mm)

St Gobain. BC408

45mm

90mm

8

Ni

80

Sci-ECAL technological prototype

- High granularity calorimeter
 - Adjacent layers are of orthogonal placement → 5mm*5mm virtual cell
 - Two layers get integrated into one superlayer
 - 16 superlayers are assembled in ECAL Aluminium frame
- > All channels' signal could be readout individually at the same time
 - 6720 electronics channels

Beam test timeline

Beam test @CERN

- ECAL Beam test : Sci-ECAL + AHCAL
 - SPS : H8 beamline, Oct 19 Nov 2, 2022
 - mu+: 108GeV/c(inadequate)
 - pi+: 10, 15, 20, 30, 40, 50, 60,80, 100, 120GeV/c (~150K events each point)
 - e+: 10, 20, 30, 40, 50, 100GeV/c (~150K events each point)
 - SPS : H2 beamline, Apr 26 May 10, 2023
 - mu-: 100GeV, 120GeV (>3M events)
 - pi-: 10, 15, 20, 30, 40, 50, 60, 70, 80, 100, 120GeV/c (>100K events each point)
 350GeV/c
 - e-: 10, 20, 30, 40, 50, 60, 70, 80, 100, 120GeV/c (>100K events each point)
 150, 200, 250GeV/c
 - PS : T9 beamline, May 17 31, 2023
 - mu-: 10GeV/c
 - pi-: 1, 3, 5, 8, 10, 12, 15GeV/c
 - e-: 0.5, 1, 2, 3, 4, 5GeV/c

Beam test @CERN

- Cherenkov detector is used to improve particle purity.
- Validation mode
 - $4\mu s$ slow clock period as time window
 - TLU coincide signal of telescope system which provides valid signal to DAQ module.

Preliminary results

- Pedestal calibration
- High gain and low gain intercalibration
- SiPM calibration
- MIP calibration
- Energy response

Pedestal calibration

- \blacktriangleright Pedestal used to be obtained from signal whose hit tag = 0
 - Some channels have multi-peaks pedestal distribution from beam test files in last year
- Pedestal is obtained from force-trigger-mode file to prevent potential problems.
- Pedestal is stable during beam test in SPS or PS respectively with a 2~3 ADC fluctuation when temperature no longer changes significantly.

28/09/2023

2023-05-27 11:3

High gain and low gain intercalibration

- SPIROC2E chip has two gain modes to cover larger dynamic range
- High gain ADC saturates at different value in the same chip

High gain and low gain ratio

About 0~6 dead channels in one layer(~210 channels), less than 3%

LED calibration

- LED data are taken during the beam test
 - SPS : 3 times (at the beginning and the middle of the beam test)
 - PS : every day
- LED data are fitted with multi-gaussians to calculate gain for each channel
- Increased the bias voltage of all channels at the beam test to compensate temperature difference from the CR test
 - The gains still decreased compared to the cosmic ray test

LED calibration at channel level

(Tatsuki, UTkoyo)

MIP calibration

- MIP peak value is obtained by fitting 100GeV/c muonevents with Landau Convolutional Gaussian function
- DAC threshold and SiPM voltage are optimized
- Track restrictions are used to improve fit result
- A small part of channels are not well fitted due to lack of statistics

Energy response

- ➢ 40GeV/c electron data from SPS H2
 - Calibrated with 100GeV muon data
 - Threshold: 0.5 MIP
 - No obvious energy leakage
 - Still contamination
- More effort to match data and simulation ...

40GeV e- energy data

HitNo2EnergyDep

Summary and plan

- Sci-ECAL and AHCAL combined test beam @CERN
 - SPS H8 beamline in last October
 - SPS H2 beamline in this April to May
 - PS T9 beamline in this May
- > Beam test data covers wide energy range for electrons, pions, and muons
- Preliminary results about fatal parameters' calibration and energy response
- Ongoing activities
 - Data purity and selection
 - Energy linearity and energy resolution
 - Geant4 simulation and digitization
 - Double check for the calibrated parameter

Plan

- SiPM saturation, temperature correction ...
- Geant4 MC validation
- Sci-ECAL and AHCAL combined analysis
- EM shower performance, Clustering/PFA performance

Thanks for CERN and CERN staff! Thanks for all CALICE Collaboration colleagues!

Backup

Pedestal multi-peaks

- Self-trigger mode, DAC calibration
- > Inject DAC(50, 100, 200, 300, 400) into channel 0, and observe the signal in channel 1

guess : crosstalk may exist in some chips and crosstalk will change

H-L gain ratio – Fit method comparison

\succ Bin and unbin fit

- Linear fit
- Fit range: (300,x_max-600)