Sebastian Ritter CALICE Collaboration Meeting - 28.09.23

Neutron PID and

3D-Printing with

Plastic Scintillators

sebastian.ritter@uni-mainz.de

on behalf of: Antoine Laudrain and Asa Nehm

PRISA

DETECTOR LAB

Neutron - Gamma Particle Identification with Plastic Scintillators

INTRODUCTION TO PULSE SHAPE DISCRIMINATION (PSD)

- Certain scintillators have different intrinsic responses to neutron and gamma excitation
- Most prominent in delayed response (late light signals)
- Usual process chain:
 - Neutron scattering
 - Proton recoil

28 09 2023

Distinguishable signal

M. Grodzicka-Kobylka et al.

particle	Medium decay constant		Long decay constant			
Gamma	13±1 ns	84%	110±10 ns	7%	800±80 ns	9%
Neutron	14±1 ns	62%	95±10 ns	13%	800±80 ns	25%

THE SETUP

28 09 2023

- AmBe source emits gammas and neutrons in coincidence
- Source surrounded by 2 PSD scintillator tiles (EJ-276G) read out by SiPMs
- Possibility to tag coincidence signal as $n + \gamma$
- Cosmic muon veto above and below

IGU

DATA TAKING

- Taking data with oscilloscope (full waveform)
- Information about time and amplitude of all peaks per event
- Compare fast component/initial peak with slow component light output

EVALUATING SEPARATION POWER

- Calculate mean lines of unbiased distributions and take mean of those for separation of neutrons and gammas
- Calculate distance for every event from the separation line

IGU

OUTLOOK

28 09 2023

Data taking with new oscilloscope

- much better S/N
- easier peak finding
- Further increase SiPM size from 4 to 9 mm² to improve separation power

 Change from peak counting to signal integration to get closer to real live application

3D-Printing Plastic Scintillators

Introduction and Motivation

- Plastic scintillators are widely used in physics detectors (trigger/veto systems, CALs, neutron/gamma detectors, TOF, etc...)
 - Mainly 3 components: polymer base, fluor and wavelength shifter (all application specific, matched to sensor)
- 3D-printing offers production of free shaped parts eventually integrating different materials in one process
 - Entirely new method to shape scintillators
 - Challenges: transparency and surface quality
- Future R&D prospects:

28 09 2023

- High-granularity calorimeters (structured scintillators)
- Increasingly complex shapes (e.g. dimples for tiles)

Image source: NUVIATech Instruments [2]

SiPM

Technology

• ARBURG Plastic Freeforming (APF [3]):

- original granulates (no softener or starter)
- in-line drying (N2 option, pre-drying if needed)
- droplet discharging (hundreds/s, 200µm nozzle, build volume of freeformer 300-3X: 234 x 134 x 230 mm³)

- Other approaches to 3D-print scintillators:
 - Fused Deposition Modeling (FDM [5], filament)
 - Digital Light Processing (DLP [6], resin)

Image source: ARBURG Media Centre [4], labels adapted

TRANSPARENCY STUDIES WITH DIFFERENT BASE MATERIALS 100

UV/Vis spectrometer analysis

 $\rightarrow 10 \text{mm of material passed}$ (usually, transparency given for 3mm thickness) $\rightarrow A(\lambda) = -\log_{10} T(\lambda)$

(absorbance A, transmittance T, wavelength λ)

- Fresnel losses of 8% (PMMA) and 10% (PS)
- Best PMMA samples almost reach reference
- PS prints less transparent than PMMA (especially below 400nm)
- Desired PS not available atm

28 09 2023

Average $T(\lambda)$ curves, 95% confidence intervals, $T(\lambda)$ not corrected for Fresnel losses

EMISSION SPECTRA FOR NUVIA SP32

(3D-printed and reference)

- **Composition:**
 - polystyrene
 - p-terphenyl
 - POPOP
- Each sample measured in four positions (including rotation)
- Characteristic POPOP peaks
- No p-therphenyl signature visible (very efficient transfer)
- Very similar spectra (slight λ-right-shift for printed samples)
- no apparent damage on scintillating components from printing

Sebastian Ritter | CALICE CM Prague | PID and 3D-printing with Plastic Scintillators

DECAY TIME MEASUREMENTS WITH NUVIA SP32

• Time-Correlated Single Photon Counting (TCSPC) using FS5 spectrometer

light source: pulsed LED (255±10nm wavelength, 900ps pulse width, 5MHz rate)

Q. Weitzel et al., "3D-printing of polystyrene-based **PRÎSMA**⁺ scintillator granulates for particle detectors" *European Physical Society Conference on High Energy Physics*, 21 – 25 August 2023

- Two time components visible (ca. 3ns and ca. 16ns decay time)
- Very similar distribution
 (fast decay slightly enhanced for printed sample)
- no apparent damage on scintillating components from printing

28 09 202-

LY MEASUREMENT WITH NUVIA SP32

Datasheet [2]: ~9700 photons/MeV

(56% relative to anthracene, cross-checked with EJ301)

*Uncertainties: \pm 0.09% PMT peak position, \pm 1.3% re-positioning and selection LaBr₃(Ce) backscatter peak effect of correction on emission spectrum folded with PMT quantum efficiency: \pm 0.3% PRISMA+ DETECTOR LAB EURO

Q. Weitzel et al., "3D-printing of polystyrene-based scintillator granulates for particle detectors" European Physical Society Conference on High Energy Physics, 21 – 25 August 2023

(~3900 p.e./MeV, losses mainly suspected

from quenching and transparency)

3D-PRINTING AHCAL-LIKE TILES

- First tests with AHCAL-like 3D-printed tiles
- Limited post processing
- Wrapped in ESR foil
- Added to one of the single tile layers in the cosmic-ray test stand in Mainz
- Processed with standard analysis chain

FIRST RESULTS

- Maximum LY reached so far: 6.2 pe/MIP (with top and bottom face milled and polished)
- About 40% 47% of reference tiles (13 15 pe/MIP)
- Consistent with characterization measurement of materials

Caveats:

28 09 2023

- Scintillators not 100% the same
- Small number of tests performed so far
- Still plenty of room for improvements:
 - Print setup not tuned for this application yet
 - Only limited postproduction strategies tested

IGU

Sebastian Ritter | CALICE CM Prague | PID and 3D-printing with Plastic Scintillators

FUTURE PLANS FOR 3D-PRINTING

- Optimize printing parameters for better transparency
- Test other PS granulates
- Further studies on efficient postproduction
- Introduce optically isolating material (TiO2 doped) to print Megatile-like segmented scintillators (second nozzle)

Printed Plexiglas[®] 6N bars for spectrometers [7]

Proceedings for EPS-HEP in preparation

SUMMARY AND OUTLOOK

Ability to separate γ and n efficiently with peak counting

- Improve further by using larger SiPM
- Move to charge integration for real live applicability

3D-printing of scintillators works well

- Granulate printing can use **cheap original materials**
- Further optimize surface quality and transparency
- Application specific prints of segmented scintillators upcoming

BACKUP

Sebastian Ritter | CALICE CM Prague | PID and 3D-printing with Plastic Scintillators

28.09.2023

REFERENCES

[1] Q. Weitzel et al., *Development of Structured Scintillator Tiles for High-Granularity Calorimeters*, Conf. Rec. of 2020 IEEE NSS MIC, pp. 1-7, (2020)

[2] NuviaTech Instruments, *NuDET Plastic Scintillation Detectors*, specification sheet, <u>www.nuviatech-instruments.com</u>, (2023)

[3] A. Kloke et al., Droplets to the Beat of Milliseconds, Kunststoffe international 11/2018, (2018)

[4] ARBURG GmbH + Co KG, *freeformer*, <u>https://www.arburg.com/en/gb/company/media-centre/brochures</u>, (2023)

[5] T. Sibilieva et al., 3D printing of inorganic scintillator-based particle detectors, JINST 18 P03007, (2023)

[6] D.G. Kim et al., *Enhanced characteristics of 3D-Printed plastic scintillators based on bisphenol fluorene diacrylates*, Rad. Phys. Chem. 198, 110255, (2022)

[7] Q. Weitzel et al., *3D-printing of transparent granulate materials for light guides and scintillation detectors*, Nucl. Instrum. Meth. A 1046, 167682, (2023)

[8] Edinburgh Instruments Ltd., FS5 Spectrofluorometer, <u>https://www.edinst.com/products/fs5-spectrofluorometer</u>, (2023)

JGU

28.09.2023

HIGH PURITY γ / COSMIC M CUT

- Select cosmic muon events for neutron separation
- Step 1) determine high purity gamma cut
- Step 2) select events below cut as high purity gamma sample and corresponding events from other tile as unbiased neutron sample

JGU

HIGH PURITY NEUTRON CUT

- Step 1) determine high purity neutron cut
- Step 2) select events above cut as high purity neutron sample and corresponding events from other tile as unbiased gamma sample
 16 high purity cut

Sebastian Ritter | CALICE CM Prague | PID and 3D-printing with Plastic Scintillators

Efficiency, Purity, Accuracy

- Efficiency
 - TP / (TP + FN)
- Purity
 - TP / (TP + FP)
- Accuracy

28.09.2023

- (TP + TN) / (TP + FP + TN + FN)

Key quantities:

200 B - 200

- True positives (TP)
- False positives (FP)
- False negatives (FN)
- True negatives (TN)

MATERIAL QUALIFICATION AND SAMPLE PRODUCTION

Q. Weitzel et al., "3D-printing of polystyrene-based PRISMA⁺ scintillator granulates for particle detectors" DETECTOR LABE European Physical Society Conference on High Energy Physics, 21 – 25 August 2023

28 09 2023

 Adjust machine settings for each material (microscope images of droplet strings [7], avoid air inclusions)

Print samples, post-processing (milling, polishing)

Base Granulate		Туре		T _{melt} (°C)		T _{lum} (%)	
Plexiglas [®] 6N*		PMMA		220-260		92	
Altuglas [®] 6N		PMMA		~200		92	
STYRON™ 686E	poly	ystyrene	190-240		~90		
Scintillator Granulate (bou	Additiv	Additive 1		Additive 2			
SP32 (blue emitting, PS-based	p-terphe	o-terphenyl		POPOP			
Scintillator Granulate (self	e) Addit	Additive 1		Additive 2			
PS (STYRON™) + PPO + Bis-	1% F	1% PPO		0.04% Bis-MSB			

*For these, reference samples were obtained from the manufacturers (made by press-molding or cast polymerization)

Sebastian Ritter | CALICE CM Prague | PID and 3D-printing with Plastic Scintillators

JGU

28.09.2023

BASELINE TEST TILES

• First:

- Postprocessing: milling dimple
- Surfaces still in print finish
- LY: 6.1 p.e./MIP
- Second:

28 09 2023

- Postprocessing: top and bottom faces milled + polished
- Dimple still in print finish
- LY: 6.2 p.e./MIP

IGU

SCINTILLATOR COMPARISON

- CALICE:
 - PS + 2% PPO + 0.1% POPOP
 - LY measured: 15 p.e./MIP (injection molded)
 - LY: 45% / 75% w.r.t. Anthracene (<u>https://agenda.linearcollider.org/event/7630/contributions/39724/attachments/32040/48438/calice_collaboration_meeting_toky_02017.pdf</u>)
 - LY: 33% w.r.t. Anthracene (<u>https://knepublishing.com/index.php/KnE-Energy/article/view/1768</u>)
- NE110-like tile:
 - PVT based

- LY measured: 24.5 p.e./MIP (machined from large plate)
- LY: 60% w.r.t. Anthracene (<u>https://eljentechnology.com/products/plastic-scintillators</u>)
- NUVIA SP 32:
 - PS + p-terphenyl + PPO
 - LY measured: 6.2 p.e./MIP (3D printed)
 - LY: 56% w.r.t. Anthracene (<u>https://www.nuviatech-instruments.com/wp-content/uploads/sites/3/2022/03/NVG-375011-NUVIATECH-CatalogueInstrument-Juillet2019-BD.pdf</u>)
- Corrected performance of 3D-printed tile to reference AHCAL tile between 24 55 %

