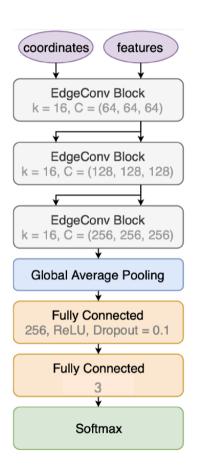
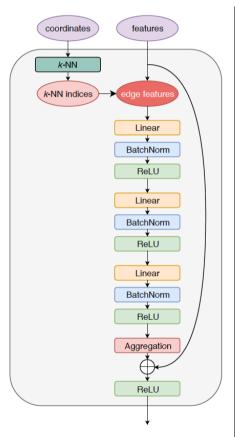

Jet reconstruction & Jet origin identification

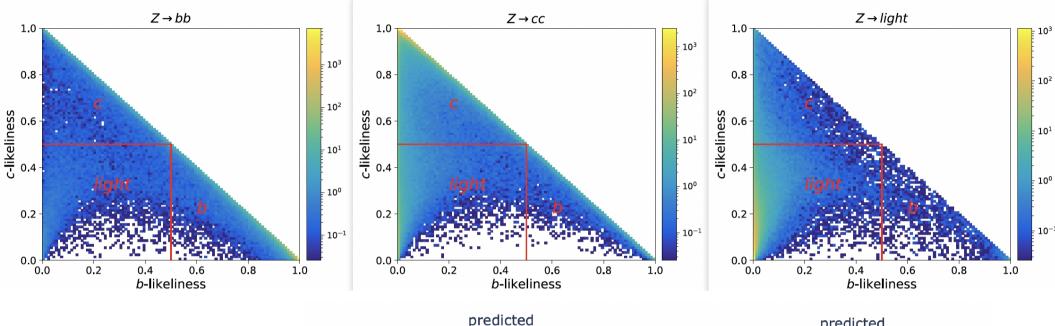
Yongfeng Zhu, Hao Liang, Huilin Qu, Cen Zhou, Manqi RUAN, etc


https://arxiv.org/abs/2309.13231


Geo. & Tools

- Jet Flavor Tagging: 3 categories (b, c, light)
- Jet origin identification: 11 categories (5 quarks + 5 anti quarks + gluon)
 - Jet Flavor Tagging + Jet Charge measurements + ...
- Full Simulated Z/H to dijet sample at CEPC-v4 detector, reconstructed with Arbor.

Particle Net: IO



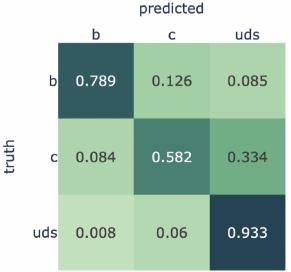
Variable	Definition						
Δ	difference in pseudorapidity between						
$\Delta\eta$	the particle and the jet axis						
$\Delta \phi$	difference in azimuthal angle between						
$\Delta \phi$	the particle and the jet axis						
$log p_T$	logarithm of the particle's p_T						
logE	logarithm of the particle's energy						
$log \frac{p_T}{p_T(jet)}$	logarithm of the particle's p_T relative to the jet p_T						
$lograc{p_T}{p_T(jet)} \ lograc{E}{E(jet)}$	logarithm of the particle's energy relative to the jet energy						
ΔR	angular separation between the particle						
ΔK	and the jet axis $(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$						
d0	transverse impact parameter of the track						
d0err	uncertainty associated with the measurement of the ${\rm d}0$						
z0	longitudinal impact parameter of the track						
z0err	uncertainty associated with the measurement of the ${\bf z}0$						
charge	electric charge of the particle						
isElectron	if the particle is an electron						
isMuon	if the particle is a muon						
isChragedKaon	if the particle is a charged Kaon						
isChragedPion	if the particle is a charged Pion						
is Proton	if the particle is a proton						
isNeutralHadron	if the particle is a neutral hadron						
isPhoton	if the particle is a photon						

Table 3. The input variables used in ParticleNet for jet flavor tagging at the CEPC.

Output: likelihoods to different categories

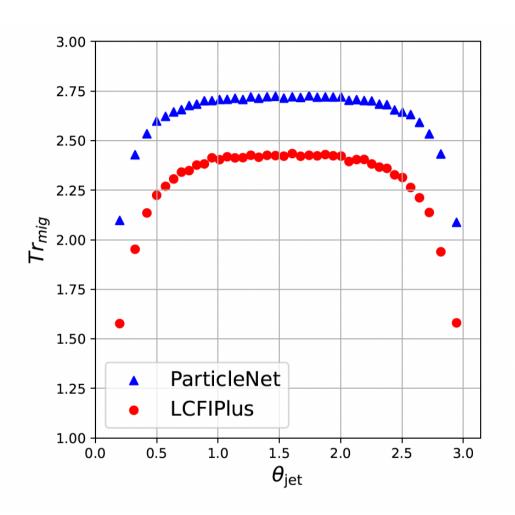
Three categories: b, c, & light

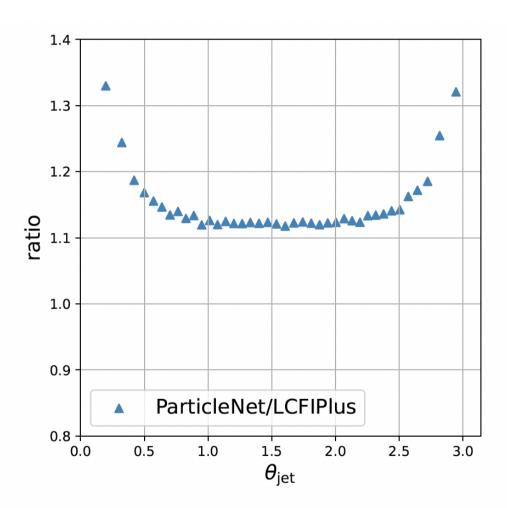


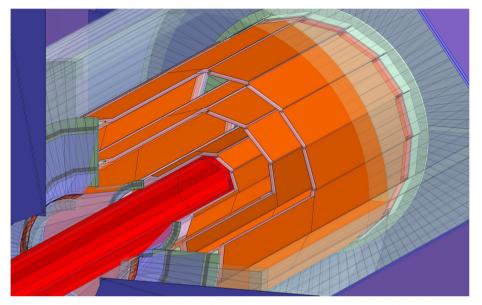

Hadronic Z pole sample

1 M Z→bb, cc, (uds) each
60/20/20% for

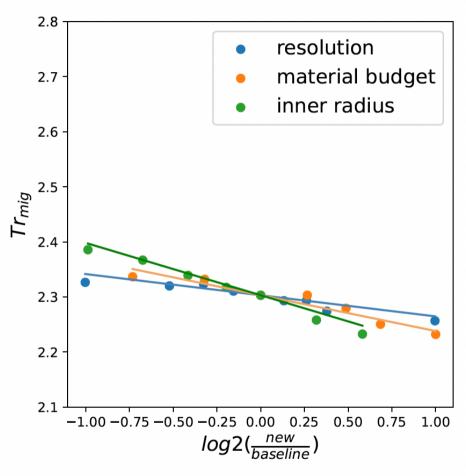
training/validating/testing.

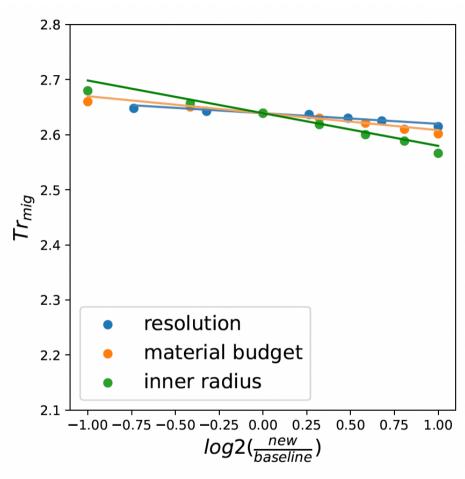

Result on Testing sample




28/9/2023

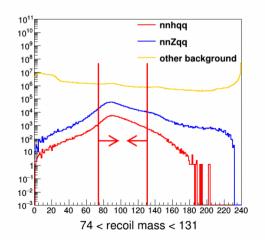
Dependence on polar angle

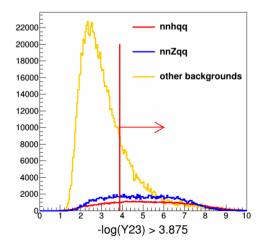


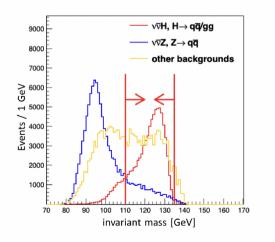

Comparison on Det. Optimization

	R (mm)	sigle-point resolution (μm)	material budget
Layer 1	16	2.8	$0.15\%/X_{0}$
Layer 2	18	6	$0.15\%/X_{0}$
Layer 3	37	4	$0.15\%/X_{0}$
Layer 4	39	4	$0.15\%/X_{0}$
Layer 5	58	4	$0.15\%/X_{0}$
Layer 6	60	4	$0.15\%/X_{0}$

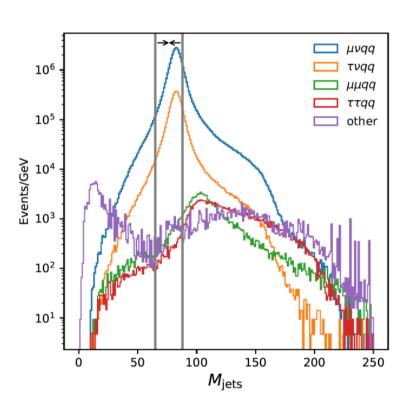
Comparison on Det. Optimization

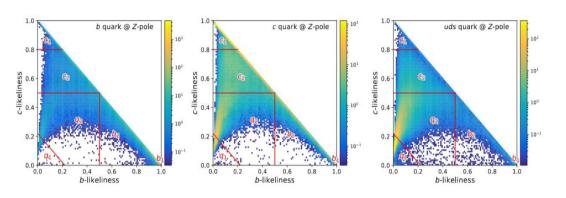



$$Tr_{mig} = 2.30 + 0.06 \cdot log_2 \frac{R_{material}^0}{R_{material}} + 0.04 \cdot log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.10 \cdot log_2 \frac{R_{radius}^0}{R_{radius}}$$
(4.1)


$$Tr_{mig} = 2.64 + 0.03 \cdot log_2 \frac{R_{material}^0}{R_{material}} + 0.02 \cdot log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.06 \cdot log_2 \frac{R_{radius}^0}{R_{radius}}$$
(4.2)

Impact on benchmark: vvH, H→jets


	ννΗq̄q/gg	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	178890	8.01 <i>E</i> 8	1.95 <i>E</i> 7	9.07 <i>E</i> 6	5.08 <i>E</i> 7	6.39 <i>E</i> 6	2.18 <i>E</i> 7	961606	16.86
recoilMass (GeV) $\in (74, 131)$	157822	5.11 <i>E</i> 7	2.17 <i>E</i> 6	1.38 <i>E</i> 6	4.78 <i>E</i> 6	1.30 <i>E</i> 6	1.08 <i>E</i> 6	74991	4.99
<i>visEn</i> (GeV) ∈ (109, 143)	142918	2.37 <i>E</i> 7	1.35 <i>E</i> 6	8.81 <i>E</i> 5	3.60 <i>E</i> 6	1.03 <i>E</i> 6	6.29 <i>E</i> 5	50989	3.92
leadLepEn (GeV) ∈ (0, 42)	141926	2.08 <i>E</i> 7	3.65 <i>E</i> 5	7.24 <i>E</i> 5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34 <i>E</i> 5	46963	3.59
multiplicity ∈ (40, 130)	139545	1.66 <i>E</i> 7	2.36 <i>E</i> 5	5.24 <i>E</i> 5	2.62 <i>E</i> 6	9.07 <i>E</i> 5	4977	42751	3.29
leadNeuEn (GeV) ∈ (0, 41)	138653	1.46 <i>E</i> 7	2.24 <i>E</i> 5	4.72 <i>E</i> 5	2.49 <i>E</i> 6	8.69 <i>E</i> 5	4552	42303	3.12
<i>Pt</i> (GeV) ∈ (20, 60)	121212	248715	1.56 <i>E</i> 5	2.48 <i>E</i> 5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	1.37
<i>PÌ</i> (GeV) ⊂ ∈ (0, 50)	118109	52784	1.05 <i>E</i> 5	74936	7.30 <i>E</i> 5	1.13 <i>E</i> 5	847	34279	0.94
$-\log 10(Y23)$ $\in (3.375, +\infty)$	96156	40861	26088	60349	2.25 <i>E</i> 5	82560	640	10691	0.76
InvMass (GeV) $\in (116, 134)$	71758	22200	11059	6308	77912	13680	248	6915	0.64
BDT ∈ (-0.02, 1)	60887	9140	266	2521	3761	3916	58	1897	0.47

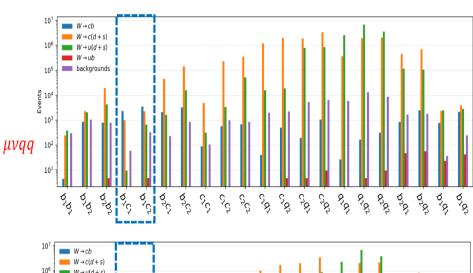

Vcb from W decay

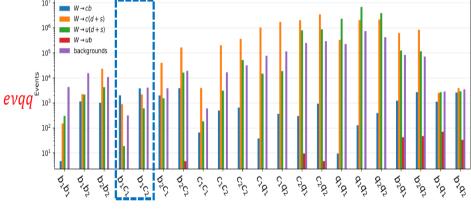
						/ \			1					
		$\mu\nu$ M	$V, W \rightarrow$		τ	$(\mu\nu)\nu_{\tau}$	W, W	\rightarrow	$\tau \nu_{\tau} q$	$q, \tau \rightarrow$				
	cb	ub	c(d/s)	u(d/s)	cb	ub	c(d/s)	u(d/s)	$e2\nu$	$had.\nu_{\tau}$	$\tau \tau qq$	$\mu\mu qq$	Higgs	others
w/o slections	40.3K	363	24.2M	24.2M	7.73K	74	4.2M	4.2M	8.66M	31.4M	2.18M	4.47M	4.07M	2.06G
$E_{\mathrm{L}\mu} > 12 \mathrm{GeV}$	37.9K	330	$22.6\mathrm{M}$	22.6M	5.59K	56	$2.98\mathrm{M}$	$2.97\mathrm{M}$	133K	687K	422K	2.82M	$645 \mathrm{K}$	186.3M
$R_{\rm L}_{\mu} > 0.85$	35.3K	302	$21.1\mathrm{M}$	21.1M	5.01K	46	$2.73\mathrm{M}$	$2.73\mathrm{M}$	1.55K	43.2K	266K	1.82M	308K	128.8M
$\cos(\theta_{\mathrm{L}\mu})$	35.3K	302	$21.1\mathrm{M}$	21.1M	5.01K	46	$2.73\mathrm{M}$	$2.73 \mathrm{M}$	1.55K	43.2K	266K	1.82M	308K	128.8M
$q_{\mathrm{L}\mu}\cos(\theta_{\mathrm{L}\mu}) < 0.20$	32.8K	283	19.6M	19.6M	4.7K	42	$2.57\mathrm{M}$	$2.57\mathrm{M}$	1.26K	39.9K	156K	1.03M	183K	92.6M
2nd isolation ℓ veto	32.8K	283	$19.5\mathrm{M}$	19.6M	4.7K	42	$2.57\mathrm{M}$	$2.57\mathrm{M}$	1.26K	39.9K	154K	526K	138K	43.9M
multiplicity ≥ 15	32.8K	283	$19.5\mathrm{M}$	19.4M	4.7K	42	$2.56 \mathrm{M}$	$2.55\mathrm{M}$	1.23K	39.6K	153K	522K	118K	185K
Missing $P_T > 9.5 \text{ GeV}/c$	31.5K	264	$18.7\mathrm{M}$	18.6M	4.38K	37	2.4M	$2.39 \mathrm{M}$	1.18K	37.2K	136K	118K	92.6K	97.7K
$M_{\rm jets} > 65 \ {\rm GeV/}c^2$	29.4K	254	18.1M	18.3M	4.15K	32	2.33M	2.35M	978	36.0K	132K	112K	85.3K	24.5K
$M_{\rm jets} < 88 \; {\rm GeV}/c^2$	24.1K	193	14.3M	14.1M	3.49K	23	1.87M	1.85M	641	24.7K	5.62K	11.5K	6.76K	4.31K
$M_{\rm jets, recoil} < 115 \text{ GeV}/c^2$	20.2K	184	13.0M	13.1M	2.96K	23	1.72M	1.73M	505	22.6K	3.57K	6.86K	536	3.02K
$M_{\mathrm{L}\mu\mathrm{S}\mu} < 75 \; \mathrm{GeV}/c^2$	19.6K	184	12.9M	13.0M	2.95K	23	1.72M	1.73M	505	22.6K	3.56K	5.78K	414	3.0K
$M_{\ell\nu} > 12 \text{ GeV}/c^2$	19.6K	184	12.9M	13.0M	2.7K	18	1.54M	1.55M	416	19.5K	2.08K	5.16K	390	1.81K
(0/)	48.8	50.6	53.5	53.7	34.9	25.0	36.7	36.9	0.0	0.1	0.1	0.1	0.0	0.0
ϵ_{kin} (%)	(0.7)	(8.1)	(0.0)	(0.0)	(1.5)	(12.5)	(0.1)	(0.1)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
$b_1c_{1,2}$	5.14K	4	2.79K	571	632	0	407	65	0	14	67	228	0	0
, , , , , , , , , , , , , , , , , , ,	12.8	1.3	0.0	0.0	8.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\epsilon_{b_1c_{1,2}}$ (%)	(0.4)	(1.3)	(0.0)	(0.0)	(0.7)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)

- Purity > 99.5% at Eff. 50% for $\mu\nu qq$ and 34% for $\tau(\mu 2\nu)\nu qq$
- Main backgrounds include:
 - $W \rightarrow c(d/s)$
 - μμqq

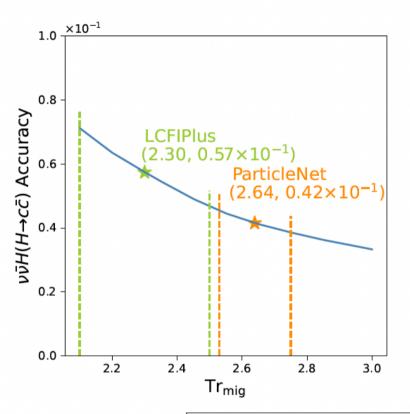
Vcb from W decay

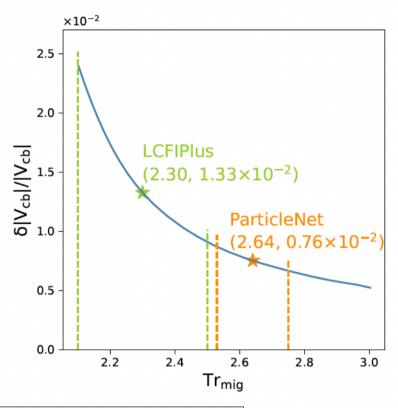
quark \ tag	b_1	b_2	c_1	c_2	q_1	q_2
b	0.47	0.378	0.0197	0.0965	0.00397	0.0315
c	0.00042	0.078	0.298	0.373	0.0682	0.182
uds	0.000104	0.00477	0.00145	0.054	0.538	0.401


• Statistical (relative) error: 1.5%, 3.4E-4, 3.4E-4

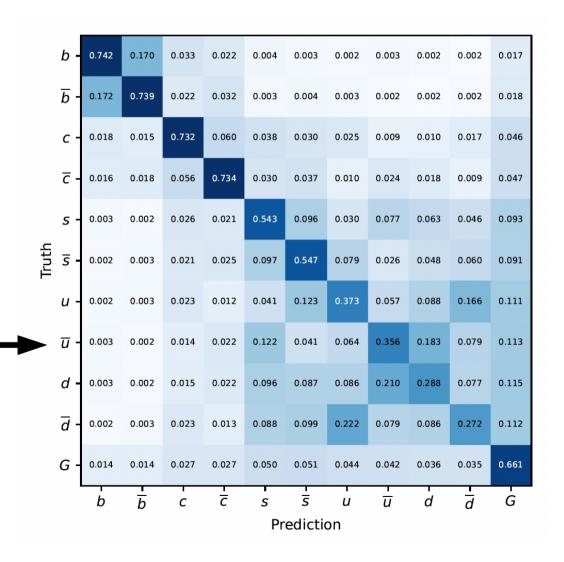

• $|V_{ch}|$ Statistical error: 0.75%

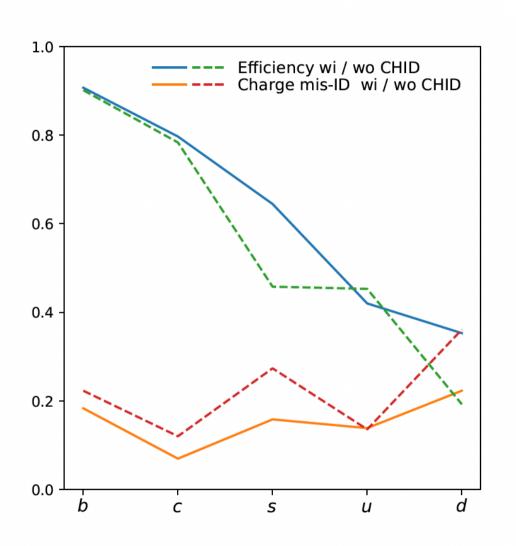
evqq

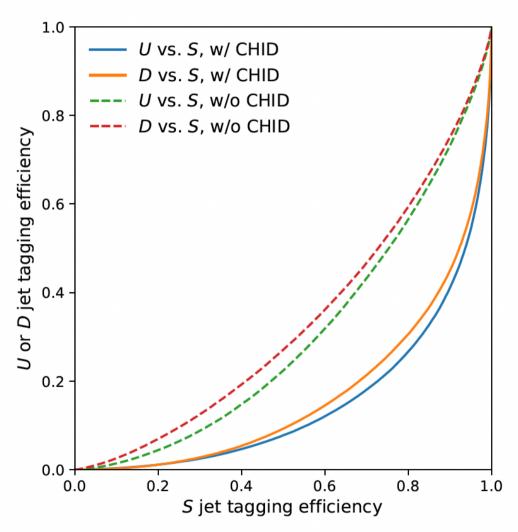

• statistical (relative) error: 1.7%, 3.7E-4, 3.7E-4


• $|V_{cb}|$ Statistical error: 0.85%

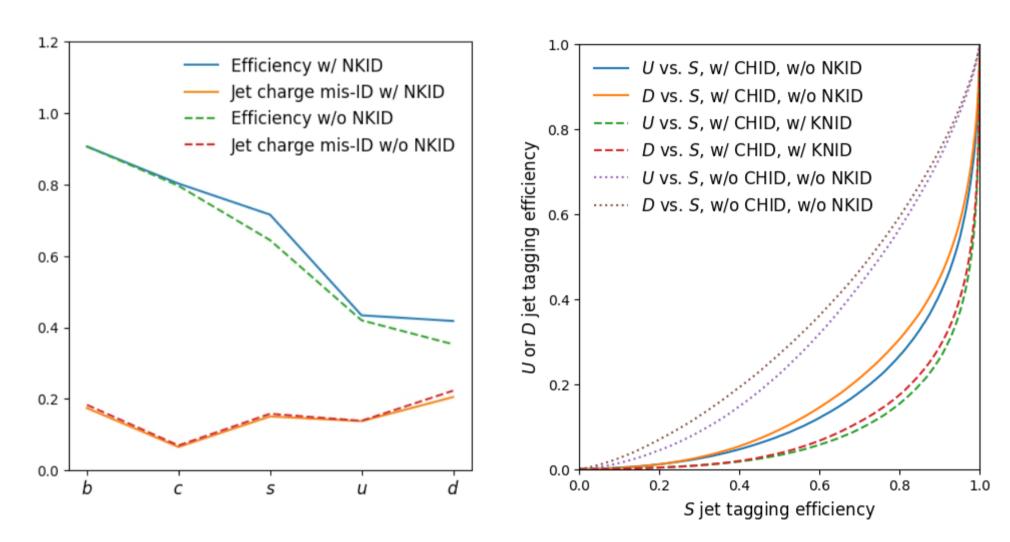
Impact on physics benchmarks



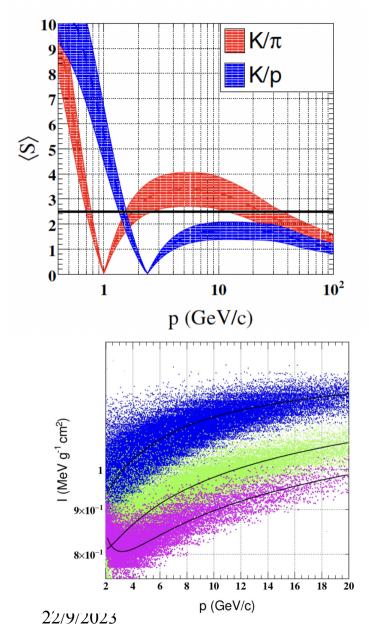

		conservative	baseline	optimal
	LCFIPlus	0.071	0.057	0.047
$ u u H c \bar{c}$	ParticleNet	0.045	0.042	0.038
	$\frac{\text{LCFIPlus}}{\text{ParticleNet}}$	1.58	1.38	1.26
	LCFIPlus	0.0241	0.0133	0.0091
$ V_{cb} $	ParticleNet	0.0086	0.0076	0.0067
	$\frac{\text{LCFIPlus}}{\text{ParticleNet}}$	2.80	1.75	1.36

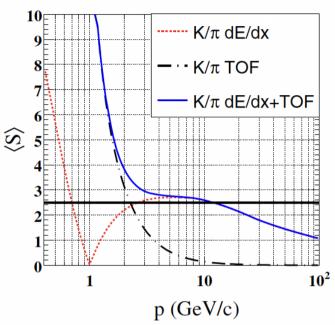

Jet origin id: 11 categories

- vvH sample, with Higgs decays into different species of colored particle: 5 quark, 5 antiquark & gluon
 - 1 Million of each type
 - 60/20/20% for training,
 validating, and testing, result
 corresponding to testing sample
- Pid: ideal Pid three categories
 - Lepton identification
 - Charged Kaon identification
 - Neutral Kaon identification
- Patterns:
 - ~ Diagonal at quark sector...
 - $P(g\rightarrow q) < P(q\rightarrow g)...$
 - Light jet id...



Impact of charged kaon id




Neutral Kaon id

Current tool (PN) is not clever enough to figure out Ks->2 pi, etc

Tracker: Pid

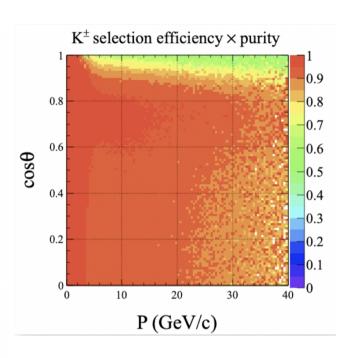
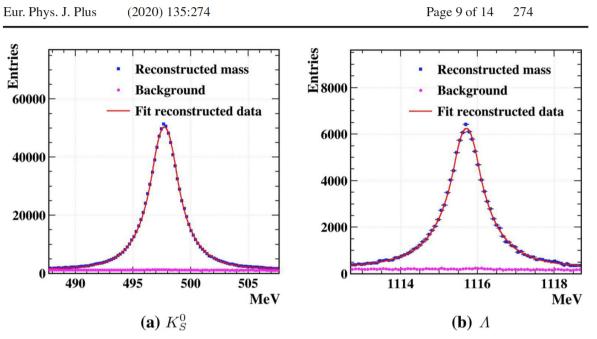



Table 3 The K^{\pm} identification performance with different factors, σ_{c} = $factor \cdot \sigma_{intrinsic}$, with/without combination of TOF information at he Z-pole. **Factor** 1. 1.2 1.5 2. 87.09 ϵ_K (%) 94.09 91.19 95.97 dE/dx $purity_K$ (%) 81.56 78.17 71.85 61.28 ε_K (%) 97.41 95.52 92.3 98.43 dE/dx & TOF $purity_K$ (%) 97.89 96.31 93.25 87.33

- Pid via dEdx or dNdx: < 3% in barrel region for GeV hadron
- Pid at Drift Chamber using dN/dx: even better performance

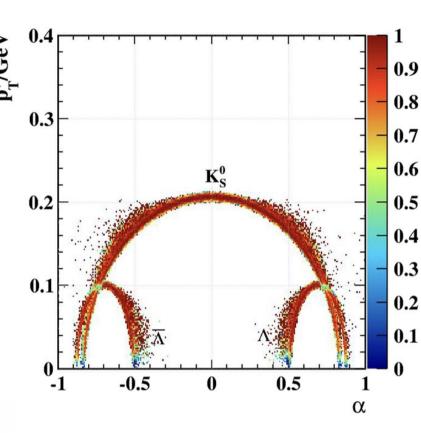
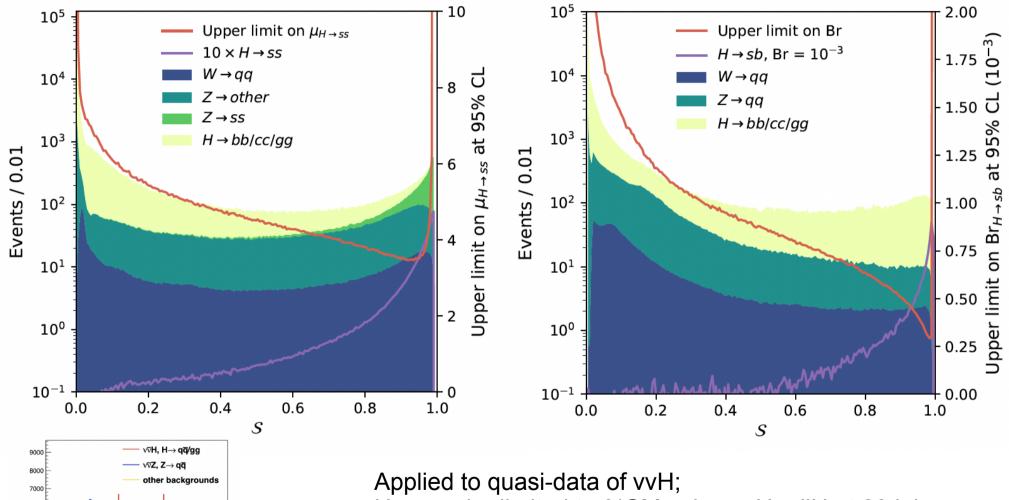
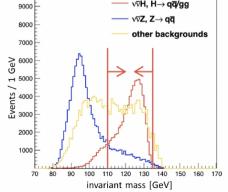

Kshort & Lambda

Fig. 7 All reconstructed mass distributions of K_S^0 and Λ . They are fitted with double-sided crystal ball functions


Table 3 K_S^0 and Λ reconstruction performance


Particle	K_S^0 (%)	Λ (%)
€R	81.3	70.1
$\epsilon_{ m T}$	40.6	27.3
P	92.4%	86.4%
$\epsilon_{R} \cdot P$	0.751	0.606
$\epsilon_{\mathbf{R}} \cdot P$ $\epsilon_{\mathbf{T}} \cdot P$	0.375	0.236

High eff/purity reco. of charged Final states...

Benchmark analyses using Jet origin ID

 $H \rightarrow ss$: be limited to 3*SM using vvH + IIH at 20 iab

 $H \rightarrow sb$: up limit of 2E-4 at 95% C.L.

Benchmark analyses using Jet origin ID

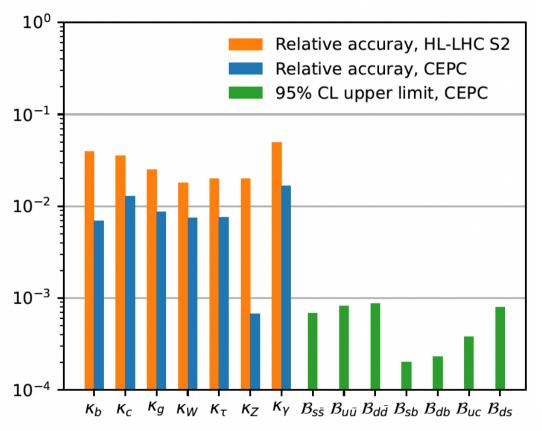


TABLE I: Summary of background events of $H \to b\bar{b}/c\bar{c}/gg$, Z, and W prior to flavor-based event selection, along with the expected upper limits on Higgs decay branching ratios at 95% CL. Expectations are derived based on the background-only hypothesis.

	Bkg	Bkg. (10^3) Upper limit (10^{-3}) $H Z W$ $s\bar{s}$ $u\bar{u}$ $d\bar{d}$ sb db uc						3)		
	H	Z	W	$s\bar{s}$	$u\bar{u}$	$dar{d}$	sb	db	uc	ds
$\nu \bar{\nu} H$	151	20	2.1	0.81	0.95	0.99	0.26	0.27	0.46	0.93
$\mu^+\mu^-H$	50	25	0	2.6	3.0	3.2	0.5	0.6	1.0	3.0
e^+e^-H	26	16	0	4.1	4.6	4.8	0.7	0.9	1.6	4.3
$ \overline{\nu}\overline{\nu}H $ $ \mu^{+}\mu^{-}H $ $ e^{+}e^{-}H $ Comb.	-	-	-	0.75	0.91	0.95	0.22	0.23	0.39	0.86

- PFA oriented detector design ~ CALICE laid solid foundation for the excellent reco/measurement at high energy frontier, especially with hadronic events at electron positron Higgs factories.
 - Better BMR shall always be pursues,
 - To be in cope with beam background & event rates,
 - Provide Pid: charged & even neutral hadron,
 - New AI tool... inject new momentum
 - ...
- At current baseline detector & ParticleNet, jet origin identification (combines jet flavor tagging + charge measurements) is possible and has encouraging performances
 - Compared to LCFIPlus, ParticleNet has significant better performance
 - Improves H->cc accuracy ~ 40%
 - Consistent conclusion on Det. Optimization
 - Higgs exotic/FCNC processes with hadronic final states limited to the BRs of 1E-3 to 1E-4;
 H→ss limited to 3 times SM prediction (vvH + IIH only)
 - Yet, it cannot figure out some Ks decays into 2 pion...
- Vision (long term): Jet origin id as Pid + Access to g(Hss) at future Higgs factory

Backup

Key parameters of the CEPC-SPPC

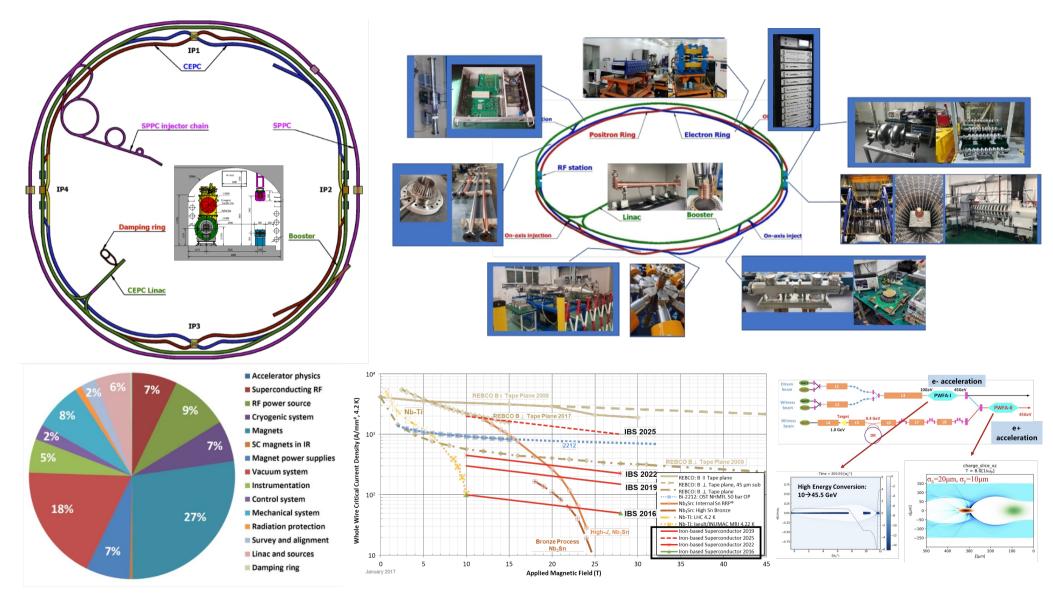
- Tunnel ~ 100 km
- **CEPC (90 240 GeV)**
 - Higgs factory: 4 M Higgs boson
 - Absolute measurements of Higgs boson width and couplings

Low Energy Booster(0.4Km)

- Searching for exotic Higgs decay modes (New Physics)
- Z & W factory: ~ 4 Tera Z boson Energy Booster(4.5Km
 - Precision test of the SM
- Rare decay
- Flavor factory: b, c, tau and QCD studies
- **SPPC (~ 100 TeV)**
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)

28/9/2023

Heavy ion, e-p collision...


Complementary

(240m)

IP3

CALICE meeting 21

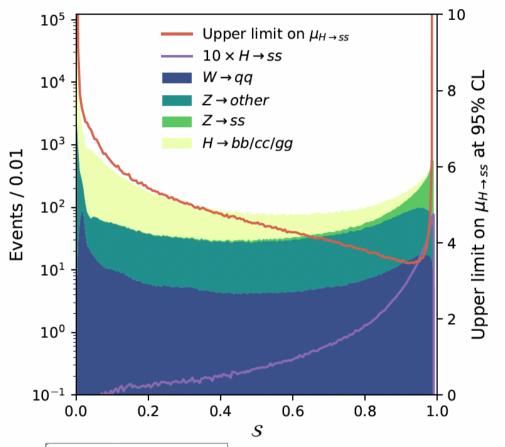
Accelerator at 2023

Platform for key technology R&D

Accelerator key technology R&D platform was established:

- > SRF cavity and module
- ➤ High precision magnet
- ➤ Vacuum assembly & coating
- ➤ High efficiency Klystron
- ➤ Mechanics and alignment
- ► Beam test facility
 12-16. June. 2023, Hongkong, CEPC Accelerator

TDR review: HK June 2023



Five years after the completion of the CDR, the draft TDR for the CEPC accelerator has been prepared. The TDR will be completed taking into account the feedback from this Committee. The key technologies for CEPC have been developed. Prototypes meeting or exceeding the specifications are available. The CEPC team is on track to launch an engineering-design effort. After a site has been selected, the construction of the CEPC could start in 2027 or 2028. The Committee endorses this plan.

The Committee wishes to congratulate the CEPC team on the excellent progress. The Committee is impressed by the amount and quality of the work performed and presented.

The next section provides answers to the different charge questions, the following sections contain comments and recommendations related to the individual presentations.

Benchmark analyses using Jet origin ID

 $H \rightarrow ss$:

be limited to 3*SM using vvH + IIH at 20 iab

Potential improvement:

Better event selection; Including qqH channel; Including neutral Kaon ID;

1 - 2 *SM @ 20 iab

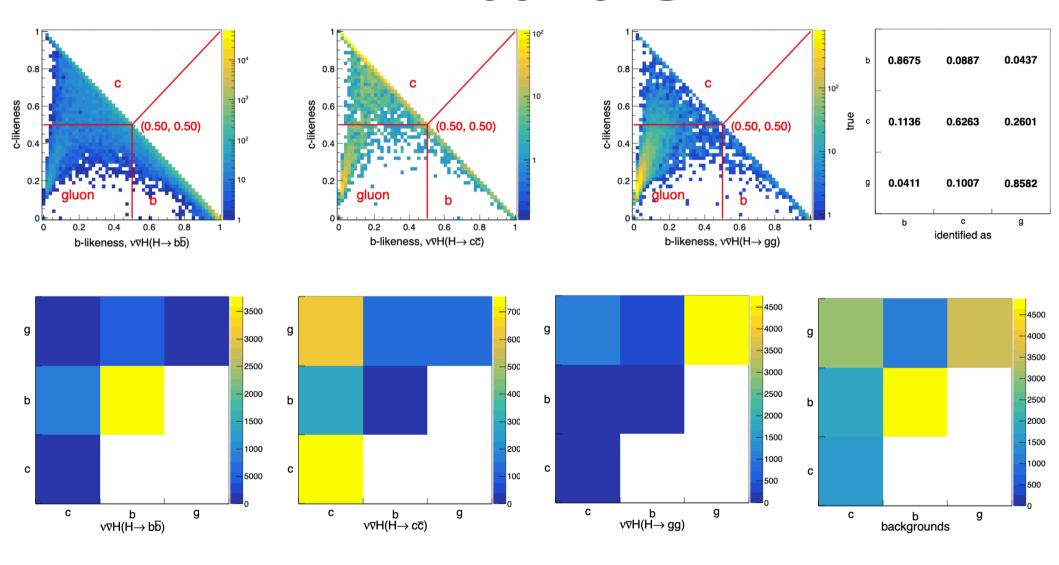
1E8 Higgs → 5-sigma discovery...

- Endeavor of 11 years: CEPC is technologically ready for construction
- CEPC supports extremely rich physics program, leads to stringent requirement to its detector system, Multiple detector concepts are proposed
- Key physics requirements for the Calorimeter system
 - EM resolution ~ 3%/sqrt(E)
 - BMR < 3%
 - ToF < 50 ps (at Cluster level)
- As for our collaboration
 - High quality glasses with cheap enough price
 - High homogeneity (< 10%)
 - High density (5-6)
 - High light yield: to support Hadronic energy resolution of 40%/sqrt(E)

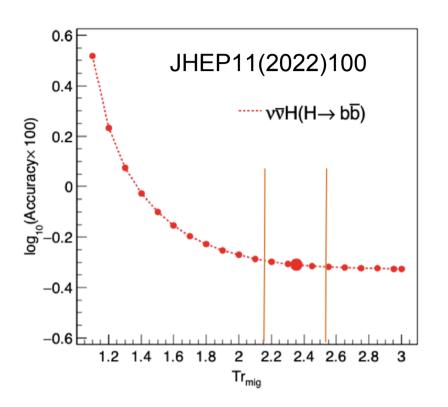
- We propose CHLOE, using
 - GSHCAL
 - Xbar ECAL + Position/timing layer of
 - Silicon
 - MGPRC
 - 2.5 Tracker Scenarios:
 - Gas Tracker R_{in/out} ~ 25/175 cm,
 Z ~ 500 cm
 - Improved 4th: Fwd RHIC
 - Full Silicon with Pid (dE/dx ~ 3%...)
 - 3 VTX Scenarios
 - Rin ~ 10 mm
 - Vin
 - Vin Portable

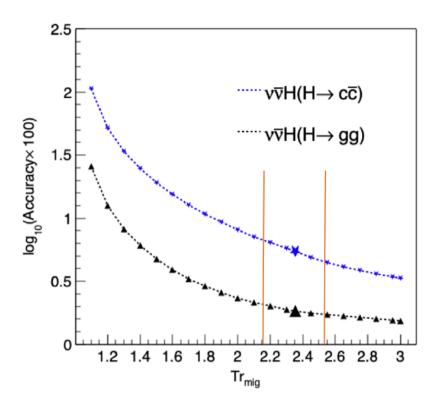
- Anticipated Performance
 - Acceptance: $cos(\theta) \sim 0.995$
 - BMR ~ 3%
 - EM resolution 3%/sqrt(E), const. term < 1%
 - Timing resolution ~ o(50) ps
 - dP/P ~ 0.1% in the barrel
 - Pid: eff/purity > 96% for charged
 Kaon at hadronic Z event
 - Jet Flavor Tagging:
 - Tr(Mig): from ~2.4 to ~2.7
 - Enhance the g(Hcc) and |Vcb| measurements by 60% - 100%...
 - Fulfill the requirements of not only Higgs, but also Flavor & New Physics

- Critical Challenges
 - Boundary conditions to determine sub-detector technology & configuration...
 - Impact of beam background on sub detectors, especially gaseous one
 - MDI design, installation & integration
 - Vin
 - Power & Signal
 - Integration Hom heat & radiation bkgrd, coating...
 - Vacuum level material requirements
 - Large curvature stitch tech...
 - ECAL
 - Xstal:
 - Homogeneity, light yield SiPM coupling, saturation;
 - Non cuboid Xstal manufactory & response
 - Energy/Position reconstruction & correction algorithm


- Critical Challenges
 - ECAL
 - Position layer optimization:
 - specification (time, position, and potentially energy),
 - cooling requirement material budget
 - HCAL
 - Requirement on homogeneity light yield & coupling to SiPM
 - Mass production of glass
 - Need to understand the in-time leakage & off-time pile up
- Action items
 - Optimization of geometry parameters via Detailed simulation + algorithm development... with machine learning, etc
 - R&D to address challenges...
 - Integration study

Detector & Software




Full simulation reconstruction Chain with Arbor, iterating/validation with hardware studies

Flavor tagging @ vvH

Vertex

$$Tr_{\rm mig} = 2.35 + 0.05 \cdot log_2 \frac{R_{\rm material}^0}{R_{\rm material}} + 0.04 \cdot log_2 \frac{R_{\rm resolution}^0}{R_{\rm resolution}} + 0.10 \cdot log_2 \frac{R_{\rm radius}^0}{R_{\rm radius}}.$$

- Vertex: track impact para & 2nd vertex reconstruction: Flavor Tagging, etc.
 - As close to the IP as possible
- Limited by the beam induced background (~ beam energy & B-Field)