

Reconstructing long-lived particles with the ILD detector

Jan Klamka, A.F. Żarnecki University of Warsaw

Long-lived particles

Numerous BSM models predict LLPs:

 \rightarrow SUSY particles, axion-like particles, heavy neutral leptons, dark photons, exotic scalars...

		Small coupling	Small phase space	Scale suppression
SUSY	GMSB			\checkmark
	AMSB		\checkmark	
	Split-SUSY			\checkmark
	RPV	 ✓ 		
NN	Twin Higgs	\checkmark		
	Quirky Little Higgs	\checkmark		
	Folded SUSY		\checkmark	
DM	Freeze-in	\checkmark		
	Asymmetric			\checkmark
	Co-annihilation		\checkmark	
Portals	Singlet Scalars	\checkmark		
	ALPs			\checkmark
	Dark Photons	\checkmark		
	Heavy Neutrinos			\checkmark

28 August 2023

Jan Klamka, Reconstructing LLPs with the ILD detector

1810.12602

International Large Detector (ILD)

- Multi-purpose detector for an e^+e^- Higgs factory, nearly 4π angular coverage, optimised for particle flow
- Time projection chamber (TPC) as main tracker allows for continuous tracking and dE/dx PID
- High granularity calorimeter with minimal material in front of it inside 3.5 T solenoid

See: general ILD status and plans talk by Uli Einhaus

28 August 2023

LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - \rightarrow complementary region could be probed at e^+e^- colliders (small masses, couplings, mass splittings)
 - \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

28 August 2023

LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - \rightarrow <u>complementary region</u> could be probed at e^+e^- colliders (small masses, couplings, mass splittings)
 - \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

- Study such challenging signatures from the experimental perspective
 - ightarrow experimental/kinematic properties, not points in a model parameter space
- Focus on a generic case two tracks from a displaced vertex
- No other assumptions about the final state, approach as general as possible

Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

ightarrow (tuned) Inert Doublet Model sample with small mass splitting, ${
m Z}^*
ightarrow \mu\mu$

Long-lived, with
$$c\tau = 1 \text{ m}$$

 $m_A - m_H = 1, 2, 3, 5 \text{ GeV}$

Jan Klamka, Reconstructing LLPs with the ILD detector

7

As a challenging case (small boost, low-pT final state) we considered:

ightarrow (tuned) Inert Doublet Model sample with small mass splitting, ${
m Z}^*
ightarrow \mu\mu$

Framework and signatures

The opposite extreme case, (large boost, high-pT final state) \rightarrow (tuned) axion-like particle model sample, $a \rightarrow \mu\mu$

Very simple vertex finding, based on a distance between track pairs

Overlay events

At linear colliders, on average 1.05 low-pT hadrons and 1 seeable e⁺e⁻ pair events are produced in each bunch-crossing

In most analyses important as they **overlay** on physical events

 \rightarrow but can look like signal on their own

Overlay events

At linear colliders, on average 1.05 low-pT hadrons and 1 seeable e⁺e⁻ pair events are produced in each bunch-crossing Vertices in overlay, before any selection

In most analyses important as they **overlay** on physical events

- \rightarrow but can look like signal on their own
- ~10¹¹ bunch-crossings per year at ILC
- Overlay events can be busy

 \rightarrow easy to find fake vertices by using a simple approach

• kinematics similar to signal

 \rightarrow expected to give dominant contribution as a separate background

Overlay events

At linear colliders, on average 1.05 low-pT hadrons and 1 seeable e⁺e⁻ pair events are produced in each bunch-crossing

In most analyses important as they **overlay** on physical events

- \rightarrow but can look like signal on their own
- ~10¹¹ bunch-crossings per year at ILC
- Overlay events can be busy

 \rightarrow easy to find fake vertices by using a simple approach

- kinematics similar to signal
 - \rightarrow expected to give dominant contribution as a separate background
 - Can be suppressed using cuts on the $\boldsymbol{p}_{\scriptscriptstyle T}$ and geometry of track pair
 - Total expected reduction factor at the level of $\sim 10^{-9} (\sim 10^{-10})$ for $\gamma \gamma \rightarrow had. (e^+e^- pairs)$

Results (heavy scalar signal)

Δm	1 GeV	2 GeV	3 GeV	5 GeV
TPC eff. (correct / decays within TPC acceptance)	3.9%	37%	52.2%	60.4%
Accuracy in TPC (correct / all found)	96.4%	97.4%	98.8%	98.6%

- Consider "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z* virtuality)
- $\Delta m = 1$ GeV scenario needs dedicated approach

Results (ALP signal)

m _a	0.3 GeV	1 GeV	3 GeV	10 GeV
TPC eff. (correct / decays within TPC acceptance)	24%	54%	77%	78%
Accuracy in TPC (correct / all found)	41%	78%	97%	99%

- Efficiency increases with mass (decreasing boost)
- Better performance for smaller radii (as opposed to heavy scalar case)
- High efficiency for masses from 1 GeV (work in progress for 0.3 GeV)

Cross section limits

With the overlay events as the main background, we can also estimate expected 95% C.L. limits on the **signal production cross section**

Assume

- 2 ab^{-1} of data at 250 GeV ILC,
- 10 yr \times 10^{11} bunch-crossings (BXs)
- 1.05 (1.00) $\gamma\gamma \rightarrow had$. (seeable e⁺e⁻ pairs) events per BX,
- total background rejection of $10^{-9}~(10^{-10})
 ightarrow \sim 1150$ expected bg. events

The estimated upper limit for $p_T^{vtx} > 1.9$ GeV:

 $\sigma_{95\% \text{ C.L.}} \lesssim 0.03 \,\text{fb} \,(0.01 \,\text{fb} \,\text{for} \,4 \,\text{ab}^{-1} \,\text{at} \,500 \,\text{GeV})$

Alternative all-silicon ILD design

<u>Alternative ILD design</u> implemented for tests

- **TPC replaced** by the **silicon Outer Tracker**, modified from the CLICdet
- One **barrel layer** added and **endcap layers spacing** increased w.r.t. CLICdet
- **Conformal tracking** algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD

 \rightarrow Check how the **results** for <u>heavy scalars</u> are influenced by a **change of tracker** design

28 August 2023

Heavy scalars at all-silicon ILD

- <u>Vertex reconstruction</u> driven by **track reconstruction efficiency**
- Performance similar to baseline design (TPC) near the beam axis
- Smaller number of hits available → efficiency drops faster with vertex displacement
- At least **4 hits required** for track reconstruction \rightarrow limited reach
- For large decay lengths, **efficiency significantly higher** for "standard" ILD with **TPC**

Summary

- We study LLPs in parameter space regions complementary to LHC searches
- Events with **two tracks** from a **displaced vertex** analysed

 \rightarrow a simple algorithm developed, with a set of cuts aimed to suppress background from the overlay events

- For heavy scalars production, with small mass splittings between LLP and DM and lowmomenta decay products, good sensitivity from $\Delta m = 2$ GeV
- Reconstruction of highly boosted, light ALPs decaying into muons performed with the same algorithm and procedure indicates <u>good sensitivity</u> for masses ≥ 1 GeV
- Estimated 95% CL limit on signal cross section is 0.03 (0.01) fb at 250 (500) GeV ILC
- Alternative ILD design used for comparison between all-silicon tracker and TPC
 → tracking tests for heavy scalars confirm higher reach of TPC in LLP searches

28 August 2023

BACKUP

28 August 2023

Jan Klamka, Reconstructing LLPs with the ILD detector

Test signal scenarios

First challenging scenario (small-boost, low-p_T track pair, not pointing towards IP):

- pair production of <u>heavy, neutral scalars</u> from Inert Doublet Model (IDM): A (heavier) and H (lighter; stable dark matter candidate)
- A can be long-lived for **small mass splittings** between A and H
- dominant decay: A \rightarrow HZ*; Z* \rightarrow $\mu\mu$ decay used for vertex reconstruction studies

Test signal scenario – highly boosted light LLPs

Exactly the opposite extreme scenario (small LLP mass, very high pT, collinear tracks):

- **axion-like particle** (ALP) produced alongside hard photon (UFO model by R. Schafer, S. Bruggisser, S. Westhoff)
- Use the same procedure as for IDM (same algorithm, cuts), $a \rightarrow \mu \mu$ decay used for studies
- Number of decays within acceptance strongly varies between signal scenarios

 $\cos(\Delta \alpha)$

Jan Klamka, Reconstructing LLPs with the ILD detector

Distance to the true vertex

Consider a vertex ,,correct" if distance to the true vtx < 30 mm

overlav

1. Large number of tracks starting near primary vertex

• Simple ,,helix distance" approach not accurate enough for numerous soft tracks starting close by in this region of the detector

) 2000 R[mm]

2. Split tracks

Due to missing hits, single track can often be reconstructed as several

Because we consider both possible track directions, a vtx can be found in between

 \rightarrow Cuts on opening angle $\cos(\alpha) > -0.6$ and tracks' curvatures ratio $|\Omega_1/\Omega_2| < 0.94$ (equiv. to p_T ratio)

 \rightarrow Additionally require at least one track with Ndf > 40 to remove vertices from short and fractional tracks

28 August 2023

Jan Klamka, Reconstructing LLPs with the ILD detector

3. Artificial short high- p_T tracks

Fraction of hits in a curler can get clustered and formed into a $high-p_T$ track

 \rightarrow Remove vtx candidates with tracks having $p_{\rm T}$ >1.5 GeV and $N_{\rm df}$ < 70

Jan Klamka, Reconstructing LLPs with the ILD detector

Tracks often randomly cross and intersect With our (basic) approach vertices are found at the intersections

- \rightarrow Cut on the **distance from vtx to first track hit** relative to the **track length**
- \rightarrow Use $\underline{\phi}$ or z, based on first-last hit distance in z

Final selection – pT

- We consider $\gamma\gamma \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions ~10⁻³ (~10⁻⁵–10⁻⁷ with preselection)
- Very small statistics in e^+e^- sample after preselection \rightarrow fit shape from $\gamma\gamma \rightarrow$ had. with floating normalisations

Jan Klamka, Reconstructing LLPs with the ILD detector

Final selection – other variables

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that **signal** tracks should come out of a single point → reference points should be close
- In busier backgound events, still many tracks evade the cuts – e.g. curlers, secondary decays
- \rightarrow either far reference points or close centres of helices

• **d**_{ref} – distance between reference points (TrackStates / first hits)

• d_{c} – distance between centres of helices projections into XY plane

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_C$ good for optimal signal-background separation \rightarrow use it to look for correlation

28 August 2023

Jan Klamka, Reconstructing LLPs with the ILD detector

Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_{C} \le -2000 \text{ mm}$, signal eff. $\sim 37\%$ ($\Delta m = 2 \text{ GeV}$)
- Estimated background eff. from fitted distributions ~10⁻⁴ (~10⁻⁶–10⁻⁷ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had.$ (e^+e^- pairs)

Jan Klamka, Reconstructing LLPs with the ILD detector

Overlay events – final selection

- ~10¹⁰ events expected per year: reduction by ~10⁻⁹ needed
- Limited MC statistics \rightarrow <u>high uncertainties</u> already at a reduction factor of ~10⁻⁵

The idea: find <u>independent</u> cuts that **combined** give highest possible efficiency

First (obvious) variable: **p**_T

<u>Second variable:</u> combination of **distances between reference points** and centres of helices projections into XY plane (helix circles)

Total expected reduction factor at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow$ had. (e⁺e⁻ pairs)

Selection assuming correlations

For small correlations r between x and y, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{ref} - \mathbf{d}_{C}$ (slide 5), assuming $\mathbf{30\%}$ correlation, for $\gamma\gamma \rightarrow$ had. (e⁺e⁻ pairs) that gives:

• 2.8·10⁻⁶ (3.4·10⁻⁶)

• $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow$ combined with preselection

Combined cut efficiency $x > 2 \cap y > 3$

Collinear tracks in TPC

- Impossible to distinguish the tracks close to the production vertex
- Tracking often assigns first hit of the second track far from vertex (small influence on reco. momentum)
- In vtx reco. we take two closest hits here it can be the two last hits!
 - Still find a vertex if it's closer to the other pair of hits, take TrackStates in this other pair

