Slide 0

Session:	T12 Detector R&D and Data Handling
Time:	20 minutes (16+4)
Audience:	mostly ATLAS people

17:00	Overview of ATLAS Upgrades projects for HL-LHC Audimax, Universität Hamburg	Ludovico Pontecorvo 16:45 - 17:05
18:00	ATLAS ITk Pixel Detector Overview Audimax, Universität Hamburg	Michele Weber 17:05 - 17:25
	The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade Audimax, Universität Hamburg	Dominique Anderson Trischuk 17:25 - 17:45
	The Silicon Vertex Detector of the Belle II Experiment Audimax, Universität Hamburg	Yo Sato 17:45 - 18:05
	Development of the time-of-flight particle identification for future Higgs factories Audimax, Universität Hamburg	Bohdan Dudar 18:05 - 18:25
	Overview of the ATLAS High-Granularity Timing Detector: project status and results Audimax, Universität Hamburg	Pablo Fernandez Martinez 18:25 - 18:45
	The LHCb VELO detector: design, operation and first results Audimax, Universität Hamburg	Alice Biolchini 18:45 - 19:00
19:00	Upgrade of the CMS luminosity instrumentation and the Fast Beam Condition Monitor for H Audimax, Universität Hamburg	L-LHC Alexey Shevelev 19:00 - 19:15

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Development of the time-of-flight particle identification for future Higgs factories

EPS-HEP2023 conference T12 Detector R&D and Data Handling

21 August 2023

Bohdan Dudar^{1,2}, Ulrich Einhaus¹, Jenny List¹, Konrad Helms^{1,3}, Frank Gaede¹

- ¹ Deutsches Elektronen-Synchrotron DESY
- ² Universität Hamburg
- ³ Georg-August-Universität Göttingen

bohdan.dudar@desy.de

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Future Higgs factory candidates

Basic idea of TOF pID

* Widely used by heavy-ion experiments (STAR, NA61/SHINE, ALICE)

- * But new technologies (10-30 ps) bring new challenges
- * Is it still relevant at CME 250 GeV?

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Track length resolution effects

100 ps time res. is dominant

Track length resolution effects

100 ps time res. is dominant

Rule of thumb: $\Delta T = 10 \text{ ps} \sim \Delta L = 3 \text{ mm}$

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

20 ps trk. len. res. is non-negligible

Note: $\Delta L/L = 0.002$ serves as an example and can be an under/over-estimation

Track length reconstruction

Equivalent formulas for perfect helix

1.
$$L = \left| \frac{\varphi_{\text{ECAL}} - \varphi_{\text{IP}}}{\Omega_{\text{IP}}} \right| \sqrt{1 + \tan^2 \lambda_{\text{IP}}}$$

2.
$$L = \sqrt{\left(\frac{\varphi_{\text{ECAL}} - \varphi_{\text{IP}}}{\Omega_{\text{IP}}}\right)^2 + (z_{\text{ECAL}} - z_{\text{IP}})^2}$$

3.
$$L = \left| \frac{z_{\text{ECAL}} - z_{\text{IP}}}{\tan \lambda_{\text{IP}}} \right| \sqrt{1 + \tan^2 \lambda_{\text{IP}}}$$

4.
$$L = \sum_{i}^{N_{\text{hits}}} L_i = \sum_{i}^{N_{\text{hits}}} \frac{|z_{i+1} - z_i|}{|\tan \lambda_i|} \sqrt{1 + \tan^2 \lambda_i}$$

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Track length reconstruction

Equivalent formulas for perfect helix

1.
$$L = \left| \frac{\varphi_{\rm ECAL} - \varphi_{\rm IP}}{\Omega_{\rm IP}} \right| \sqrt{1 + \tan^2 \lambda_{\rm IP}}$$

2.
$$L = \sqrt{\left(\frac{\varphi_{\text{ECAL}} - \varphi_{\text{IP}}}{\Omega_{\text{IP}}}\right)^2 + (z_{\text{ECAL}} - z_{\text{IP}})^2}$$

3.
$$L = \left| \frac{z_{\text{ECAL}} - z_{\text{IP}}}{\tan \lambda_{\text{IP}}} \right| \sqrt{1 + \tan^2 \lambda_{\text{IP}}}$$

4.
$$L = \sum_{i}^{N_{\text{hits}}} L_i = \sum_{i}^{N_{\text{hits}}} \frac{|z_{i+1} - z_i|}{|\tan \lambda_i|} \sqrt{1 + \tan^2 \lambda_i}$$

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Track length reconstruction

TPC is great for reconstructing the track length. Many hits (220 in our case), thus:

* Better track fit

* Smaller uncertainties on track parameters

* Better sensitivity to changes along the track

Full Si trackers might face difficulties (?)

Track length can be a limiting factor for TOF pID, especially with extreme timing using simplified reconstruction.

Time-of-flight reconstruction in ILD

- → space&material budget
- \rightarrow affects the particle flow

(no digitization effects, only Gaussian smear of MC true time) * Central question: what is the best way for TOF reconstruction?

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

* Hit time reconstruction is very simplified

21 March 2023

 $\sim 50 \text{ ps}$

Time-of-flight reconstruction in ILD

Note: **TOF**true is defined as: MC true time of the closest ECAL shower hit to the track position at the surface correcting for the distance assuming speed of light

* Averaging over shower hits introduces long non-Gaussian tails (efficiency/purity loss)

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Time-of-flight reconstruction with machine learning

EPIC regression: arXiv:2301.08128

Time resolution effect on the pID

Let's quantify the separation

Separation power from p-value

Separation power from p-value

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Separation power vs TOF resolution

- Improving time resolution will extend the separation range *if not limited by other factors (track length, clock jitter, clock sync., ...)
- * At 30 ps resolution per particle π/K (K/p) separation reaches up to 3 GeV (5 GeV)

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

TOF interplay with dE/dx in ILD

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Momentum distribution of the charged hadrons

Use TOF to refine tracking?

track fit using π mass (default)

* Reduces bias in curvature Ω (p_T) for low-momentum hadrons

* Better track fit in principle translates to better vertexing

Many other potential physics applications:

* H \rightarrow bb/cc/ss/gg, A_{FB}, flavour physics, generator tuning, Kaons mass measurement

* Big landscape for further studies for quantifying the effects

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

21 March 2023

track fit using true mass (perfect pID)

Summary

- * Track length reconstruction is not trivial and can be a limiting factor for TOF. Not clear how easy with fully Si tracking.
- * Dedicated timing layer or full ECAL with conventional Si sensors both viable. A better **understanding of heat&cooling requirements** is needed.
- * 30 ps resolution per particle provides π/K (K/p) separation at 3σ up to 3 GeV (5 GeV). Can be significantly extended with better resolution.
- TOF nicely complements the blind spots of already existing pID tools such as dE/dx, and extends momentum coverage.
- Exact physics applications are still to be studied.
 Mild event reconstruction improvement can be achieved.

Back up

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

TOF reconstructed mass vs bias of TOF or track length

Rule of thumb: $\Delta T = 10 \text{ ps} \sim \Delta L = 3 \text{ mm}$

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

Conventional separation power comparison

Conventional sep. power (gauss fit) is a bad estimator

- * overestimates the performance
- fit is unstable with low statistics (requires less binning)
- Incapable of dealing with non-Gaussian tails
- * Incapable of dealing with particle miss-match
- Usually one doesn't check the fit quality in every slice and hopes everything works "ok"

Sep.Power =
$$\frac{|\mu_1 - \mu_2|}{\sqrt{0.5(\sigma_1^2 + \sigma_2^2)}}$$

p-value sep. power (presented in this study)

- More stable with low statistics (nothing is fitted)
- * Works nice with ANY shapes even non-Gaussian
- Translates to efficiency and mis-id by definition