

Probing CPV mixing in the Higgs sector in VBF at 1 TeV ILC

N. Vukasinovic, I. Bozovic Jelisavcic, G. Kacarevic

on behalf of the ILD Detector Concept Group

VINCA Institute of Nuclear Sciences, Belgrade, Serbia

OPENING QUESTIONS/OUTLINE

- 1. Could 125 GeV Higgs mass eigenstate be a CPV mixture of CP-odd and CP-even states via mixing angle $\Psi_{\rm CP}$?
- 2. If so, with what precision $\Psi_{\rm CP}$ can be measured at 1 TeV ILC ?
- 3. What is the interpretation of measurement sensitivity (in the context of Snowmass CPV White paper [arXiv:2205.07715v3])?

SENSITIVE OBSERVABLE

Generic model of CPV mixing: h_{125} =H·cos Ψ_{CP} + A·sin Ψ_{CP} CP-sensitive observable: angle between production planes $\Delta \phi$ As shown in [arXiv:2203.11707v2] $\Delta \Phi$ carries the most information on Higgs CP state In the Higgs rest frame $\Delta \Phi = \begin{cases} arc \cos{(\cos{\Delta}\Phi)}, \ sgn(sin) \ \Phi \ge 0 \\ 2\pi - arc \cos{(\cos{\Delta}\Phi)}, \ sgn(sin) \ \Phi \le 0 \end{cases}$ $cos \Phi = (-\hat{n}_1 \cdot \hat{n}_2)$ e 1 $\Delta \Phi$ $sgn(sin \Phi) = \frac{q_1 \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_1 \cdot (\hat{n}_1 \times \hat{n}_2)|} \qquad \hat{n}_1 = \frac{q_{e_i^-} \times q_{e_f^-}}{|q_{e_i^-} \times q_{e_f^-}|} \qquad \hat{n}_2 = \frac{q_{e_i^+} \times q_{e_f^+}}{|q_{e_i^+} \times q_{e_f^+}|}$ \otimes n_1

 $\overline{n_2}$

e+

00

e+)

SIGNAL AND BACKGROUND

~ 1 TeV energies are optimal due to interplay of x-section and centrality

1 TeV	σ (fb)	Expected in 8 ab ⁻¹	Reconstructed with ILD					
SIGNAL: $e^+e^- \rightarrow Hee, H \rightarrow b\overline{b}$	13	104000	200000 DELPHES 3495 full sim.					
$e^+e^- ightarrow q\bar{q} l^+ l^-$	255	2·10 ⁶	5886					
$e^+e^- \rightarrow q\bar{q}$	9375	75·10 ⁶	120343					
$e^+e^- ightarrow q\bar{q} l v$	4116	32.9·10 ⁶	955058					

	√s	beam polarisation	∫Ldt (baseline)			
ILC	0.1 - 1 TeV	e-: 80% e+: 30% (20%)	2 ab ⁻¹ @ 250 GeV 0.2 ab ⁻¹ @ 350 GeV 4 ab-1 @ 500 GeV 8 ab-1 @ 1 TeV			

- Generator level WHIZARD
 V2.8.3/UFO/Higgs characterization
 model signal and WHIZARD 1.95/SM
 background
- Unpolarized beams

GENERATED AND RECONSTRUCTED SIGNAL

Corrected reconstructed signal for pure scalar $\Psi_{CP}=0$, **generated** information (WHIZARD) and **uncorrected** reconstructed signal

- Acceptance correction needed to retrieve full physical information
- o Generated information is reasonably well reproduced with corrected reconstructed data

EVENT SELECTION

• **Preselection – electron isolation:**

- $\circ m_{e^+e^-} > 200~{
 m GeV}$ (veto HZ)
- DELPHES electron isolation
 - \circ $\Delta Rmax = 0.5$

$$\circ \quad p_{\text{Tmin}} = 0.5 \text{ GeV}$$

$$\circ \quad I = \frac{\sum_{i \neq P}^{p_T(i) > p_T^{min}} p_T(i)}{p_T(P)} < 0.12$$

Signal preselection efficiency: ~71%

\circ $\,$ Selection cuts:

- $\circ \quad 80 \; GeV < m_{q\bar{q}} < 160 \; GeV$
- $\circ m_{Z_1,Z_2} > 30 \, GeV$
- $\circ \quad p_{Tee} > 15 \; GeV,$
- $\circ p_{T_{miss}} > 150 \ GeV$
- Selection efficiency: 96%
- Total signal efficiency: ~ 68%

$\circ~$ Unbiased selection w.r.t. $\Delta \Phi$

 Background fully suppressed, but needs additional simulation effort: sample rather small (~1% of the full size), not all flavors contained

ANGULAR OBSERVABLE $\Delta\Phi$ and mixing angle $\Psi_{\rm CP}$

 $\circ~$ Minimum of $\Delta \Phi$ shifts for non-zero $\Psi_{\rm CP}$

• Differently from the H $\rightarrow \tau \tau$ angular observable whose dependence on Ψ_{CP} can be derived from the differential x-section, here Ψ_{CP} has to be extracted **empirically**

- ✓ Minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data: $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} : (b/a)/ $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation: $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

- ✓ Minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data: $f(\Delta \Phi, \Psi_{CP})=A+B \cdot cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} : (b/a)/ $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation: $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

- ✓ Minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data: $f(\Delta \Phi, \Psi_{CP})=A+B \cdot cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} : (b/a)/ $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation: $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

- ✓ Minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data: $f(\Delta \Phi, \Psi_{CP})=A+B \cdot cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} : (b/a)/ $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation: $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

PSEUDO-EXPERIMENTS

 $\Delta \Psi^{CP}_{(stat.)}$ = 4 mrad

- o 2000 pseudo-experiments give 4 mrad for statistical dissipation of the mean
- Pull distribution indicates that uncertainties are correctly estimated
- $\circ~$ Systematic error from the fit parameter uncertainties gives ~1 mrad

INTERPRETATION

- Common framework is defined in the Snowmass CPV White paper: benchmark parameter $f_{CP} \sim sin^2(\Delta \Psi_{CP})$ quantifying relative contribution from CP-odd amplitude
- Interpretation for LHC/HL-LHC and future Higgs factories, for EFT and CP-sensitive observable based measurements

		(68% CL, pure scalar)								[arXiv:2205.07715v3]			
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target	
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	$1,\!300$	125	125	3,000	(theory)	
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000		
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-3}$	$3.0 \cdot 10^{-6}$) 🗸	\checkmark	\checkmark	\checkmark	$< 10^{-5}$	
$H\gamma\gamma$		0.50	\checkmark				(10 ab^{-1})		0.06			$< 10^{-2}$	
$HZ\gamma$		~ 1	\checkmark			_	~ 1	—		_	_	$< 10^{-2}$	
Hgg	0.12	0.011	\checkmark	_	_		—			_	_	$< 10^{-2}$	
$Ht\bar{t}$	0.24	0.05	\checkmark	_	—	0.29	0.08	\checkmark		_	\checkmark	$< 10^{-2}$	
$H\tau\tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06		\checkmark	\checkmark	\checkmark	$< 10^{-2}$	
$H\mu\mu$	_	_	_	_	_	_	_		_	\checkmark	_	$< 10^{-2}$	

1 TeV ILC

- ✓ First measurement in VBF
- ✓ First measurement in HZZ vertex based on angular observable

INTERPRETATION

(68% CL, pure scalar)

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1 TeV	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	$30,\!000$	250	350	500	8 ab ⁻¹	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	1.6 ·10 ⁻⁵	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$		0.50	\checkmark	_	_		_		0.06			$< 10^{-2}$
$HZ\gamma$		~ 1	\checkmark				~ 1					$< 10^{-2}$
Hgg	0.12	0.011	\checkmark	—	—	_	—	_		_	_	$< 10^{-2}$
$Ht\bar{t}$	0.24	0.05	\checkmark		_	0.29	0.08	\checkmark			\checkmark	$< 10^{-2}$
$H\tau\tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06		\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$							_			\checkmark		$< 10^{-2}$

SUMMARY

- ✓ Complete simulation of CPV Higgs mixing angle ($\Psi_{\rm CP}$) measurement is performed at 1 TeV ILC with the ILD detector
- ✓ This is the first result in VBF fusion based on angular observable ($\Delta \Phi$);
- ✓ Knowing the dependence of $\Delta \Phi$ minimum to $\Psi_{\rm CP}$ from simulation, $\Psi_{\rm CP}$ can be determined from (experimental) data;
- ✓ From 8 ab⁻¹ of 1 TeV ILC data, pure scalar state should be measured with 4 mrad statistical uncertainty of Ψ_{CP} at 68% CL; Systematic uncertainty from the fit is found to be smaller (< 1 mrad);
- ✓ The above uncertainty corresponds to $f_{\rm CP} \approx 1.6 \cdot 10^{-5}$ approaching theoretical target;
- \checkmark The study is ongoing in terms of further refinements in background simulation.

BACKUP

ILC AND ILD

- Mature e^+e^- collider project (TDR in 2013)
- $\circ~$ Currently led by the IDT
- Superconducting technology (prototyped for E-XFEL)
- Tunable and upgradeable (1 TeV)
- Comes with numerous options for auxiliary experiments (beam-dump, fixed target)

Jet energy resolution 3-4%

- Asymptotic transverse momentum resolution = $2 \cdot 10^{-5}$ GeV⁻¹
 - \circ Impact parameter resolution < 5 μ m
 - Hermeticity down to 5 mrad
 - Triggerless operation
 - Current status summarized in IDR

arXiv:2003.01116