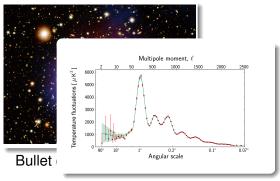
Search for dark photons at future e⁺e⁻ colliders

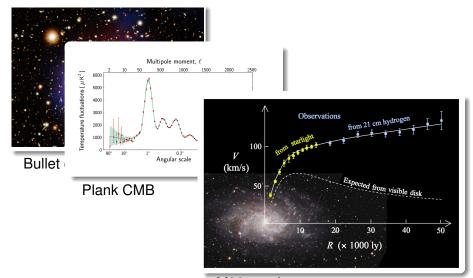
Mikael Berggren¹, Sepideh Hosseini-Senvan^{1,2}

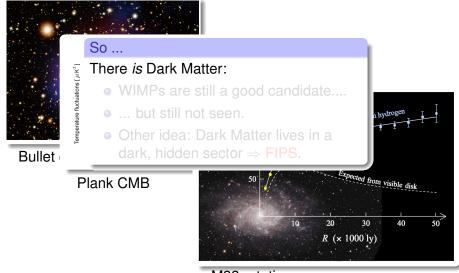
¹DESY, Hamburg, ²Universität Hamburg

European Physical Society Conference on High Energy Physics, August 20-25, 2023 Universität Hamburg

CLUSTER OF EXCELLENC








Bullet cluster


Plank CMB

 $R \ (\times 1000 \ \text{ly})$

Introduction: FIPS

Feebly interacting particles is a class of models explaining dark matter and why it's not yet been seen in a different way.

- Generically, FIPS are models where rather than having heavy new particles with sizeable couplings, the new physics might be light, but much more weakly coupled.
- So, the reason why the BSM has not yet been seen is not the lack of energy, but the lack of precision - be it luminosity, background contamination or detector performance.

Introduction: FIPS

Types of FIPS, and how to detect them

- The Higgs Portal: Dark Higgs
- The fermions Portal: Sterile Neutrinos.
- The Pseudoscalar Portal: Axions (and ALPS)

and

The Vector Portal: Dark photons
 what we will discuss here.

Introduction: FIPS

Types of FIPS, and how to detect them

- The Higgs Portal: Dark Higgs
- The fermions Portal: Sterile Neutrinos.
- The Pseudoscalar Portal: Axions (and ALPS)

and

The Vector Portal: Dark photons

which is what we will discuss here.

4/18

The Vector Portal - Dark Photons, AD

Assume that there is a dark sector with a dark U(1) symmetry

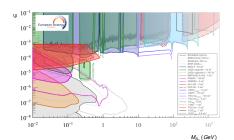
- The relevant part of the Lagrangian is $\mathcal{L}_{gauge} = -\frac{1}{4}\,\hat{B}_{\mu\nu}\,\hat{B}^{\mu\nu} \frac{1}{4}\,\hat{Z}_{D\mu\nu}\,\hat{Z}_D^{\mu\nu} + \frac{1}{2}\,\frac{\epsilon}{\cos\theta_W}\,\hat{Z}_{D\mu\nu}\,\hat{B}^{\mu\nu}.\,\,\hat{B} \text{ is the ordinary U(1) field-strength tensor, and }\hat{Z}_D \text{ that of the dark U(1)}$
- The Dark Photon might mix with the photon by *kinetic mixing* the $\hat{Z}_D\hat{B}$ term , so that $e^+e^- \to A_D \to f\bar{f}$ is possible.
- The (arbitrary) mixing parameter ϵ must be small, so the coupling is weak. There will be few events, but the decay will form a very narrow peak, or even a displaced vertex.
- Note that the dark photon itself is not the dark matter, since it isn't stable ... Something else in the dark sector that is stable is needed in addition.

The Vector Portal - Dark Photons, AD

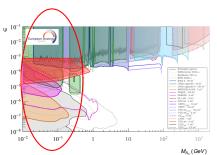
- Assume that there is a dark sector with a dark U(1) symmetry
- The relevant part of the Lagrangian is $\mathcal{L}_{gauge} = -\frac{1}{4}\,\hat{B}_{\mu\nu}\,\hat{B}^{\mu\nu} \frac{1}{4}\,\hat{Z}_{D\mu\nu}\,\hat{Z}_D^{\mu\nu} + \frac{1}{2}\,\frac{\epsilon}{\cos\theta_W}\,\hat{Z}_{D\mu\nu}\,\hat{B}^{\mu\nu}$. \hat{B} is the ordinary U(1) field-strength tensor, and \hat{Z}_D that of the dark U(1).
- The Dark Photon might mix with the photon by *kinetic mixing* the $\hat{Z}_D\hat{B}$ term , so that $e^+e^- \to A_D \to f\bar{f}$ is possible.
- The (arbitrary) mixing parameter ε must be small, so the coupling is weak. There will be few events, but the decay will form a very narrow peak, or even a displaced vertex.
- Note that the dark photon itself is not the dark matter, since it isn't stable ... Something else in the dark sector that is stable is needed in addition.

The Vector Portal - Dark Photons, AD

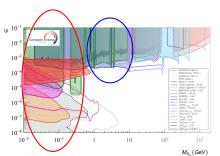
- Assume that there is a dark sector with a dark U(1) symmetry
- The relevant part of the Lagrangian is $\mathcal{L}_{gauge} = -\frac{1}{4}\,\hat{B}_{\mu\nu}\,\hat{B}^{\mu\nu} \frac{1}{4}\,\hat{Z}_{D\mu\nu}\,\hat{Z}_D^{\mu\nu} + \frac{1}{2}\,\frac{\epsilon}{\cos\theta_W}\,\hat{Z}_{D\mu\nu}\,\hat{B}^{\mu\nu}$. \hat{B} is the ordinary U(1) field-strength tensor, and \hat{Z}_D that of the dark U(1).
- The Dark Photon might mix with the photon by *kinetic mixing* the $\hat{Z}_D\hat{B}$ term , so that $e^+e^- \to A_D \to f\bar{f}$ is possible.
- The (arbitrary) mixing parameter ε must be small, so the coupling is weak. There will be few events, but the decay will form a very narrow peak, or even a displaced vertex.
- Note that the dark photon itself is not the dark matter, since it isn't stable ... Something else in the dark sector that is stable is needed in addition.

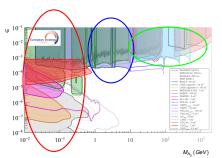


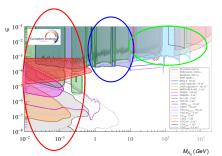
Current projections form the European Particle Physics Strategy Update of 2019

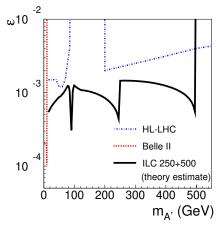

- All experiment, log mass-scale (from the EPPSU briefing book.)
- Masses up to ~ 1 GeV: LLPs detected in Beam-dump experiments. Sensitive to very small couplings
- Beyond that: colliders

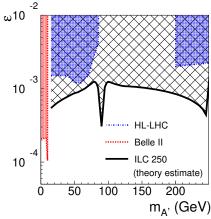
Mikael Berggren (DESY)

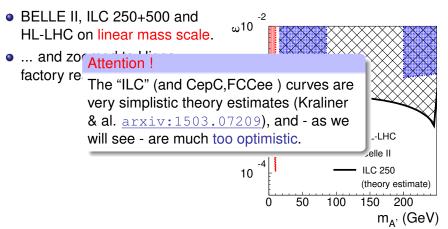

- Up to 10 GeV: B factories extremely high luminosity.
- Then: e⁺e⁻ up to their maximum energy
- ... and beyond that pp


- All experiment, log mass-scale (from the EPPSU briefing book.)
- Masses up to ~ 1 GeV: LLPs detected in Beam-dump experiments. Sensitive to very small couplings
- Beyond that: colliders
 Up to 10 GeV: B factories extremely high luminosity.
 Then: e e up to their maximum energy
 - maximum energy
 ... and beyond that pp

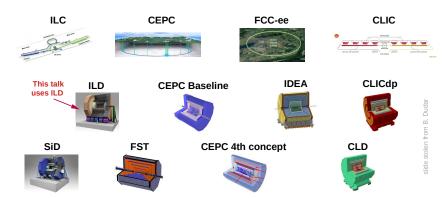

- All experiment, log mass-scale (from the EPPSU briefing book.)
- Masses up to ~ 1 GeV: LLPs detected in Beam-dump experiments. Sensitive to very small couplings
- Beyond that: colliders
 - Up to 10 GeV: B factories extremely high luminosity.
 - Then: e⁺e⁻ up to their maximum energy
 - ... and beyond that pp colliders


- All experiment, log mass-scale (from the EPPSU briefing book.)
- Masses up to ~ 1 GeV: LLPs detected in Beam-dump experiments. Sensitive to very small couplings
- Beyond that: colliders
 - Up to 10 GeV: B factories extremely high luminosity.
 - Then: e⁺e⁻ up to their maximum energy
 - ... and beyond that pp

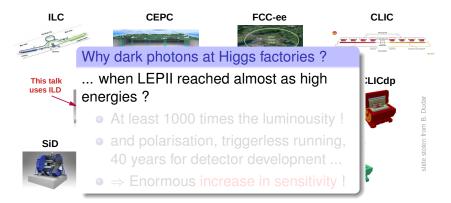

- All experiment, log mass-scale (from the EPPSU briefing book.)
- Masses up to ~ 1 GeV: LLPs detected in Beam-dump experiments. Sensitive to very small couplings
- Beyond that: colliders
 - Up to 10 GeV: B factories extremely high luminosity.
 - Then: e⁺e⁻ up to their maximum energy
 - ... and beyond that pp colliders.

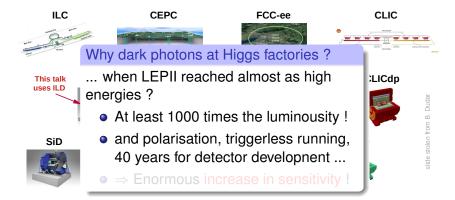


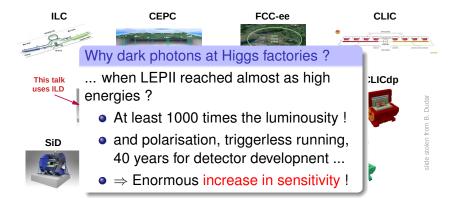
- BELLE II, ILC 250+500 and HL-LHC on linear mass scale.
- ... and zoomed to Higgs factory reach.



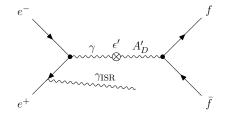
- BELLE II, ILC 250+500 and HL-LHC on linear mass scale.
- ... and zoomed to Higgs factory reach.

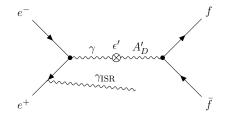



The Bestiary of proposed future e⁺e⁻ colliders, and their detectors


The Bestiary of proposed future e⁺e⁻ colliders, and their detectors

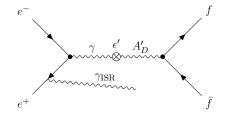
The Bestiary of proposed future e⁺e⁻ colliders, and their detectors

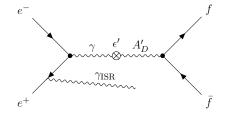

The Bestiary of proposed future e⁺e⁻ colliders, and their detectors


Signal process:

 ${
m e^+e^-} o \gamma_{ISR} A_D o \mu^+ \mu^- \gamma_{ISR},$ where E_{ISR} is such that the recoil-mass against the ISR is M_{A_D}

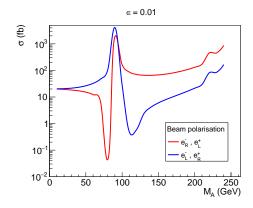
- ullet Both σ and Γ scales with ϵ^2 .
 - One could hope to exclude σ > O(1 fb)
 - For the corresponding 2, Γ is O(10 keV) to O(10 MeV).
 - detector resolution will determine the peak-width
 - ⇒ decay is prompt
 (c_T < 1 nm)


- Signal process:
 - ${
 m e^+e^-} o \gamma_{ISR} A_D o \mu^+ \mu^- \gamma_{ISR},$ where E_{ISR} is such that the recoil-mass against the ISR is M_{A_D}
- Both σ and Γ scales with ϵ^2 .
 - One could hope to exclude σ > O(1 fb)
 - For the corresponding ϵ^2 , Γ is $\mathcal{O}(10 \text{ keV})$ to $\mathcal{O}(10 \text{ MeV})$.
 - ⇒ detector resolution will determine the peak-width
 - \Rightarrow decay is prompt ($c\tau < 1 \text{ nm}$).


• Signal process: $e^+e^- \rightarrow \gamma_{ISB}A_D \rightarrow \mu^+\mu^-\gamma_{ISB}$,

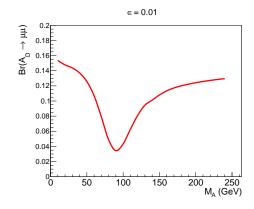
where $E_{ISR}A_D \rightarrow \mu^+\mu^-\gamma_{ISR}$, where E_{ISR} is such that the recoil-mass against the ISR is M_{A_D}

- Both σ and Γ scales with ϵ^2 .
 - One could hope to exclude σ > O(1 fb)
 - For the corresponding ϵ^2 , Γ is $\mathcal{O}(10 \text{ keV})$ to $\mathcal{O}(10 \text{ MeV})$.
 - ⇒ detector resolution will determine the peak-width
 - \Rightarrow decay is prompt ($c\tau < 1 \text{ nm}$).


- Signal process:
 - ${
 m e^+e^-} o \gamma_{ISR} A_D o \mu^+ \mu^- \gamma_{ISR},$ where E_{ISR} is such that the recoil-mass against the ISR is M_{A_D}
- Both σ and Γ scales with ϵ^2 .
 - One could hope to exclude σ > O(1 fb)
 - For the corresponding ϵ^2 , Γ is $\mathcal{O}(10 \text{ keV})$ to $\mathcal{O}(10 \text{ MeV})$.
 - ⇒ detector resolution will determine the peak-width
 - \Rightarrow decay is prompt ($c\tau < 1 \text{ nm}$).

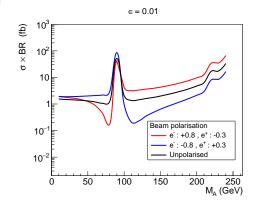
- Production cross-section σ for fully polarised beams.
- BR($A_D \rightarrow \mu \mu$)
- "Effective" $\sigma \times$ BR (meaning:

$$N_{events} = \sigma_{eff} \times \int \mathcal{L}$$
) for


- ILC expected polarisations and
 - unpolarised beams
- \bullet Γ_{tot}

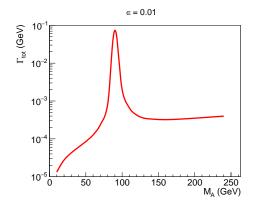
- Production cross-section σ for fully polarised beams.
- BR($A_D \rightarrow \mu \mu$)
- ullet "Effective" $\sigma \times$ BR (meaning:

$$N_{events} = \sigma_{eff} \times \int \mathcal{L}$$
) for


- ILC expected polarisations, and
 - unpolarised beams.
- Γ_{tot}

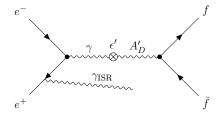
- Production cross-section σ for fully polarised beams.
- BR($A_D \rightarrow \mu \mu$)
- "Effective" σ× BR (meaning:

$$N_{events} = \sigma_{eff} \times \int \mathcal{L}$$
) for


- ILC expected polarisations, and
- unpolarised beams.
- Γ_{tot}

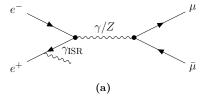
- Production cross-section σ for fully polarised beams.
- BR($A_D \rightarrow \mu \mu$)
- "Effective" $\sigma \times$ BR (meaning:

$$N_{events} = \sigma_{eff} imes \int \mathcal{L})$$
 for

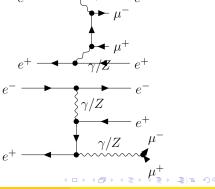

- ILC expected polarisations, and
- unpolarised beams.
- Γ_{tot}

Dark Photons in a real detector

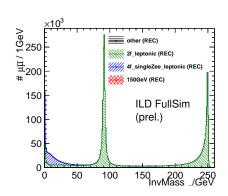
Pass such generated events through the full Geant 4-based simulation (ddsim) and reconstruction (Marlin) of ILD.


- Select events with two muons, and possibly an isolated photon - nothing else.
- Include all (fully simulated) SM background.
- Look for an arbitrarily small peak in the $M(\mu\mu)$ distribution, with natural width $<<\delta_{det}(M)$, over the SM background
- ... which varies with M_A , and is not only $e^+e^- \rightarrow \mu^+\mu^- + ISR$
- The target.

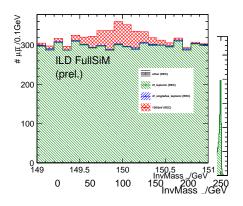
Dark Photons in a real detector


Pass such generated events through the full Geant 4-based simulation (ddsim) and reconstruction (Marlin) of ILD.

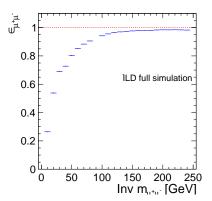
- Select events with two muons, and possibly an isolated photon - nothing else.
- Include all (fully simulated) SM background.
- Look for an arbitrarily small peak in the $M(\mu\mu)$ distribution, with natural width $<<\delta_{det}(M)$, over the SM background
- ... which varies with M_A , and is not only $e^+e^- \rightarrow \mu^+\mu^- + ISR$
- The target.


Pass such generated events through the full Geant 4-based simulation (ddsim) and reconstruction (Marlin) of ILD.

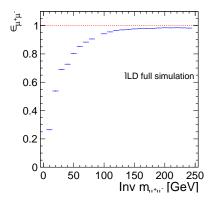
- Select events with two muons, and possibly an isolated photon - nothing else.
- Include all (fully simulated) SM background.
- Look for an arbitrarily small peak in the $M(\mu\mu)$ distribution with natural width $<<\delta_{det}(M)$, over the SM background
- ... which varies with M_A , and is not only $e^+e^- \rightarrow \mu^+\mu^- + ISR$
- The target.

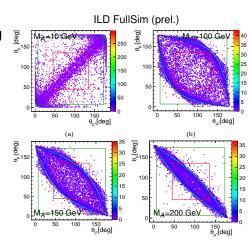

Pass such generated events through the full Geant 4-based simulation (ddsim) and reconstruction (Marlin) of ILD.

- Select events with two muons, and possibly an isolated photon - nothing else.
- Include all (fully simulated) SM background.
- Look for an arbitrarily small peak in the $M(\mu\mu)$ distribution, with natural width $<<\delta_{det}(M)$, over the SM background
- ... which varies with M_A , and is not only $e^+e^- \rightarrow \mu^+\mu^- + ISR$
- The target.



Pass such generated events through the full Geant 4-based simulation (ddsim) and reconstruction (Marlin) of ILD.


- Select events with two muons, and possibly an isolated photon - nothing else.
- Include all (fully simulated) SM background.
- Look for an arbitrarily small peak in the $M(\mu\mu)$ distribution, with natural width $<<\delta_{det}(M)$, over the SM background
- ... which varies with M_A , and is not only $e^+e^- \rightarrow \mu^+\mu^- + ISR$
- The target.


- Efficiency to find two muons.
- Why so low ? ILD track-finding is 100 % efficient down to $p_T \sim 300$ MeV and angles to the beam above $\sim 10^{\circ}$!?
- Here's why: Angular distribution of the muons - we need to see both to get a pair, obviously!

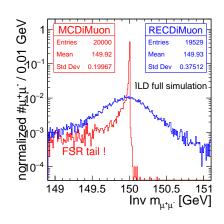
- Efficiency to find two muons.
- Why so low ? ILD track-finding is 100 % efficient down to $p_T \sim 300$ MeV and angles to the beam above $\sim 10^{\circ}$!?
- Here's why: Angular distribution of the muons - we need to see both to get a pair, obviously!

- Efficiency to find two muons.
- Why so low ? ILD track-finding is 100 % efficient down to $p_T \sim 300$ MeV and angles to the beam above $\sim 10^\circ$!?
- Here's why: Angular distribution of the muons - we need to see both to get a pair, obviously!

• Mass resolution:

 $M=p_1p_2(1-\cos\theta_{12})$, and the ISR is along the beam and $\sigma(1/p_T)$ vs. p is constant, so error-propagation gives $\sigma_M \propto M^2$, right ?

Wrong.

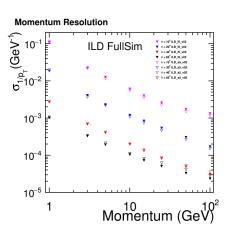

Due to M.S., for

 $p\gtrsim 100$ GeV, $\sigma(1/p_T)$ is no constant, rather $\propto p^{-1}$.

Strong dependence on θ in the forward region.

 and most muons are below 100 GeV

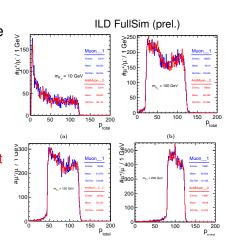
and are not in the barreland are not on the curve for



Mass resolution:

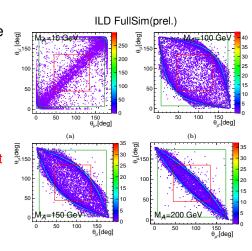
 $M=p_1p_2(1-\cos\theta_{12})$, and the ISR is along the beam and $\sigma(1/p_T)$ vs. p is constant, so error-propagation gives $\sigma_M \propto M^2$, right?

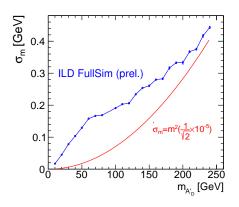
Wrong.


- Due to M.S., for $p \gtrsim 100$ GeV, $\sigma(1/p_T)$ is not constant, rather $\propto p^{-1}$. Strong dependence on θ in the forward region.
- and most muons are below 100 GeV
- and are not in the barrel
- and are not on the curve for ISB at zoro angle.

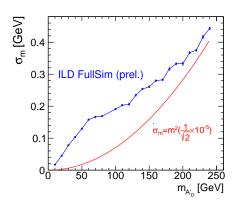
Mass resolution:

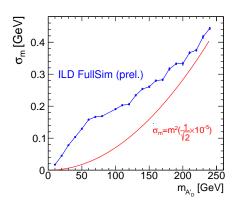
 $M=p_1p_2(1-\cos\theta_{12})$, and the ISR is along the beam and $\sigma(1/p_T)$ vs. p is constant, so error-propagation gives $\sigma_M \propto M^2$, right?


- Wrong.
 - Due to M.S., for $p \gtrsim 100$ GeV, $\sigma(1/p_T)$ is not constant, rather $\propto p^{-1}$. Strong dependence on θ in the forward region.
 - and most muons are below 100 GeV
 - and are not in the barrel
 - and are not on the curve for ISB at zero angle

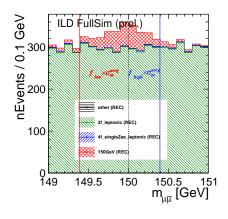

Mass resolution:

 $M = p_1 p_2 (1 - \cos \theta_{12})$, and the ISR is along the beam and $\sigma(1/p_T)$ vs. p is constant, so error-propagation gives $\sigma_M \propto M^2$, right?

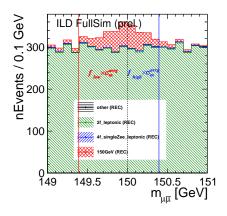

- Wrong.
 - Due to M.S., for $p \gtrsim 100$ GeV, $\sigma(1/p_T)$ is not constant, rather $\propto p^{-1}$. Strong dependence on θ in the forward region.
 - and most muons are below 100 GeV
 - and are not in the barrel
 - and are not on the curve for ISR at zero angle


- Bottom line: None of the assumptions on the mass-resolution - the red curve - used for the EPPSU curve are valid. The correct full simulation values are the blue curve.
- The resolution will vary a lot event-by-event - with angle and momentum of the muons, and the angle of the ISR.
- ⇒ Event-by-event simulation is essential

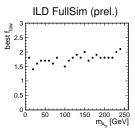
- Bottom line: None of the assumptions on the mass-resolution - the red curve - used for the EPPSU curve are valid. The correct full simulation values are the blue curve.
- The resolution will vary a lot event-by-event - with angle and momentum of the muons, and the angle of the ISR.
- ⇒ Event-by-event simulation is essential

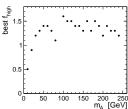


- Bottom line: None of the assumptions on the mass-resolution - the red curve - used for the EPPSU curve are valid. The correct full simulation values are the blue curve.
- The resolution will vary a lot event-by-event - with angle and momentum of the muons, and the angle of the ISR.
- ⇒ Event-by-event simulation is essential.

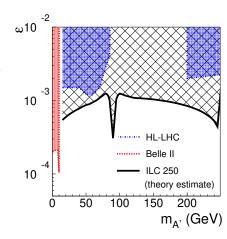


- However, the uncertainty is known, event-by-event, since the track-fit covariance matrix is output from the fit!
- Use this to optimise the search:
 - Define the signal-window as a factor times the

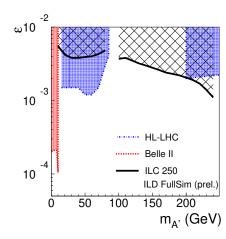

 event-specific a
 - factors are different above and below the tested mass because of FSR.
 - Optimise these factors for sensitivity at each tested

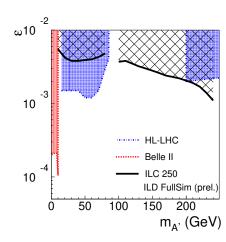


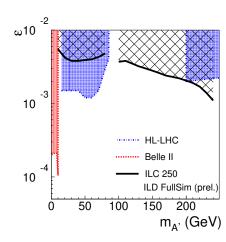
- However, the uncertainty is known, event-by-event, since the track-fit covariance matrix is output from the fit!
- Use this to optimise the search:
 - Define the signal-window as a factor times the event-specific σ_m .
 - factors are different above and below the tested mass, because of FSR.
 - Optimise these factors for sensitivity at each tested mass



- However, the uncertainty is known, event-by-event, since the track-fit covariance matrix is output from the fit!
- Use this to optimise the search:
 - Define the signal-window as a factor times the event-specific σ_m .
 - factors are different above and below the tested mass, because of FSR.
 - Optimise these factors for sensitivity at each tested mass.




- Compared to the theory curve ...
- ... this is the (current) result with full simulation.
- At the highest mass, the correct limit is a factor two higher, a factor four at 100 GeV.
- This is due to the correct estimate of the error.
- Below M_Z, the difference is larger, and HL-LHC limits are expected to be stronger.
- Here, the reason is both the correct error-estimate, but also the much larger background from non- $Z \rightarrow \mu\mu$ processes.


- Compared to the theory curve ...
- ... this is the (current) result with full simulation.
- At the highest mass, the correct limit is a factor two higher, a factor four at 100 GeV.
- This is due to the correct estimate of the error.
- Below M_Z, the difference is larger, and HL-LHC limits are expected to be stronger.
- Here, the reason is both the correct error-estimate, but also the much larger background from non- $Z \rightarrow \mu\mu$ processes.

- Compared to the theory curve ...
- ... this is the (current) result with full simulation.
- At the highest mass, the correct limit is a factor two higher, a factor four at 100 GeV.
- This is due to the correct estimate of the error.
- Below M_Z, the difference is larger, and HL-LHC limits are expected to be stronger.
- Here, the reason is both the correct error-estimate, but also the much larger background from non- $Z \rightarrow \mu\mu$ processes.

- Compared to the theory curve ...
- ... this is the (current) result with full simulation.
- At the highest mass, the correct limit is a factor two higher, a factor four at 100 GeV.
- This is due to the correct estimate of the error.
- Below M_Z, the difference is larger, and HL-LHC limits are expected to be stronger.
- Here, the reason is both the correct error-estimate, but also the much larger background from non- $Z \rightarrow \mu\mu$ processes.

Conclusion and outlook

Uptake:

- Even for or maybe in particular for the most simple topology full simulation is needed.
- Because in these cases, precision is the most important aspect.
- Even though the correctly evaluated reach is significantly less than the theory estimate, e⁺e⁻ colliders will probe lower dark photon couplings than HL-LHC, at least for masses above M_Z

Outlook

Several non-trivial ameliorations are possible

Conclusion and outlook

Uptake:

- Even for or maybe in particular for the most simple topology full simulation is needed.
- Because in these cases, precision is the most important aspect.
- Even though the correctly evaluated reach is significantly less than the theory estimate, e^+e^- colliders will probe lower dark photon couplings than HL-LHC, at least for masses above M_Z .

Outlook:

Several non-trivial ameliorations are possible

Conclusion and outlook

Uptake:

- Even for or maybe in particular for the most simple topology full simulation is needed.
- Because in these cases, precision is the most important aspect.
- Even though the correctly evaluated reach is significantly less than the theory estimate, e^+e^- colliders will probe lower dark photon couplings than HL-LHC, at least for masses above M_Z .

Outlook:

- Several non-trivial ameliorations are possible
 - LR weighting of the samples with different polarisations.
 - Include $A_D \rightarrow e^+e^-$: Need methods to compensate for brems-strahlung to get good enough mass-resolution.
 - No use of the ISR photon made. Can it be used? Background reduction at low M_A , or even better resolution?
 - Use event-by-event error better: un-binned Maximum Likelihood.
 - Spend some running-time scanning E_{CMS}.
 - ...

Thank You!

Backup

BACKUP SLIDES