Higgs self-coupling measurement at future e+e- colliders.

EPS-HEP2023 Rehearsal

Julie Munch Torndal^{1,2}, Jenny List¹ Dimitris Ntounis³, Caterina Vernieri³ ¹DESY, Hamburg ²Universität Hamburg, Hamburg ³SLAC **August, 2023**

Higgs self-coupling

Higgs potential in SM after SSB

$$V(h) = rac{1}{2}m_{H}^{2}h^{2} + \lambda_{3}
u h^{3} + rac{1}{4}\lambda_{4}h^{4}$$

with $\lambda_3^{SM} = \lambda_4^{SM} = \frac{m_H^2}{2\nu^2}$

Measure $oldsymbol{\lambda}$

- ullet
 ightarrow determine shape of Higgs potential
- $\bullet \rightarrow \mathsf{establish} \ \textbf{Higgs} \ \textbf{mechanism} \ \mathsf{experimentally}$

 $\bullet \to$ determine how the Universe froze in the EW sector, giving mass to gauge bosons, fermions, and the Higgs itself

BSM: deviations in $\lambda \rightarrow$ new physics in Higgs sector

Higgs self-coupling

Indirect access:

• through loop-order-corrections found from EFT fits using single Higgs measurements and running at two different *E*_{cm}

Direct access:

through double-Higgs production

 $\frac{\Delta\lambda_{HHH}}{\lambda_{HHH}} = \mathbf{c} \cdot \frac{\Delta\sigma_{HHx}}{\sigma_{HHx}}$

→ cross section measurement

Landscape of future e^+e^- colliders

Centre-of-mass energies:

$\sqrt{s} \; / { m GeV}$	Z	WW	ZH	tī	ZHH +ttH	$\nu \nu HH$
ILC	-	-	250	350	500	1000
C^3	-	-	250	-	550	-
CLIC	-	-	380	(350)	1500	3000
FCC-ee	91	160	240	365 (350)	-	-
CEPC	91	160	240	360	-	-

• ILC/ C^3 proposes to run at 500/550 GeV which targets the direct ZHH measurement

The ZHH analysis

- State-of-the-art projections at ILC performed 7-10 years ago <u>DESY-THESIS-2016-027</u>
- Performed at proposed E_{CM} of 500 GeV
- Precision reach after full ILC running scenario ($HH \rightarrow bbbb + HH \rightarrow bbWW$)
 - $ightarrow \Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8$ %
 - $\rightarrow \Delta \lambda_{\rm SM} / \lambda_{\rm SM} = 26.6\%$

Discovery potential clearly demonstrated

- $\rightarrow~\Delta\lambda_{\rm SM}/\lambda_{\rm SM}~=10\%$ when combined with additional running scenario at 1 TeV
- Improvements in reconstruction tools has the potential to bring the sensitivity to better than 20%

Open questions:

- How does the improvements in reconstruction tools improve the sensitivity to the Higgs self-coupling?
- How does increasing the ECM improve or impair the sensitivity to the Higgs self-coupling?

Choice of centre-of-mass energy

• More ZHH events but larger σ_{ZHH} contributions from diagrams NOT containing the Higgs self-coupling

Advantages of going to higher energies:

- More boosted jets
- \rightarrow Less misclustering, better jet-pairing?
- → Better kinematic separation of signal and background?
- → Improved b-tagging efficiencies?

Disadvantages of going to higher energies:

- Sensitivity factor increases with the E_{CM}
- → Less sensitivity to Higgs self-coupling?

$$\frac{\Delta\lambda}{\lambda} = \mathbf{F}\cdot\frac{\Delta\sigma}{\sigma}$$

Julie Munch Torndal | EPS-HEP2023 Rehearsal | August, 2023 | Page 6

DESY.

Jet clustering

Perfect jet clustering:

- jet-finding ambiguities from high multiplicities in ZHH, ZZH and ZZZ events
- ightarrow degrades mass resolutions ightarrow reduces separation ightarrow reduces $\delta\lambda$ by factor ~ 2

Misclustering Jet clustering

Dijets are classified in misclustering categories, based on the overlap fraction between the true and reco dijet energy.

Fraction of dijets in category A:

\sqrt{s} [GeV]	A [%]
500	45.5
550	50.5
600	53.7

DESY.

Flavor tagging

Example @ 80% signal efficiency:

	DBD	new	ATLAS
1-eff(c)	90%	95%	75%
Rejection factor	10	20	4

Improved *b*-tagging efficiency since state-of-the-art projections from 2016 [DESY-THESIS-2016-027]

• For 5% relative improvement in $\varepsilon_{b-\text{tag}}$

 \rightarrow 11% expected relative improvement in $\Delta \sigma_{\rm ZHH}/\sigma_{\rm ZHH}$

• *b*- (and *c*-) hadron decay lengths increases with E_{CM}

Julie Munch Torndal | EPS-HEP2023 Rehearsal | August, 2023 | Page 9 DESY.

Kinematic fitting

Exploit well-known initial state in e^+e^- colliders for:

- > Improve kinematics, e.g. mass resolution
- > Hypothesis testing
- > Jet-pairing

Errorflow

Parametrize sources of uncertainties for *individual* jets [Yasser Radkhorrami, 2023]:

$$\sigma_{E_{jet}} = \sigma_{Det} \oplus \sigma_{Conf} \oplus \sigma_{\nu} \oplus \sigma_{Clus} \oplus \sigma_{Had} \oplus \sigma_{\gamma\gamma}$$

 χ^2 -function to minimise:

$$L(y) = \Delta y^{T} \mathbf{V}(y)^{-1} \Delta y + 2 \sum_{k=1}^{m} \lambda_{k} f_{k}(a, y)$$

DESY

- σ_{Det} : Detector resolution
- σ_{Conf} : Particle confusion in Particle Flow Algorithm
- σ_{ν} : Neutrino correction

Hypothesis testing Kinematic fitting

• Pre-fitted dijet-masses show large overlap between signal (*ZHH*) and background (*ZZH*)

PRELIMINARY

Calculate χ^2 for ZHH and ZZH hypotheses for both ZHH and ZZH events ZHH hypothesis:

- 4-momentum conservation
- 2 \times Higgs mass constraints

ZZH hypothesis:

 \rightarrow

- 4-momentum conservation
- Higgs mass constraint + Z mass constraint

Hypothesis testing **Kinematic fitting**

PRELIMINARY

• Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH)

• Hypothesis testing showed good separation for low χ^2 -values of signal (*ZHH*) and background (ZZH) in previous analysis DESY-THESIS-2016-027 DESY.

Hypothesis testing Kinematic fitting

M^{dijet} [GeV] 200 7HH 774 100 50 50 _____ M_{dijet} [GeV] 50 100 150

• Pre-fitted dijet-masses show large overlap between signal (*ZHH*) and background (*ZZH*)

PRELIMINARY

• With ErrorFlow \rightarrow larger separation of signal (*ZHH*) and background (*ZZH*)

Kinematic fitting at higher E_{CM}

Julie Munch Torndal | EPS-HEP2023 Rehearsal | August, 2023 | Page 12

PRELIMINARY

Precision on Higgs self-coupling

collider	indirect- <i>h</i>	direct- <i>hh</i>
HL-LHC	100-200%	50%
ILC250	-	_
ILC500	58%	20%*
ILC1000	52%	$10\%^*$
CLIC380	_	_
CLIC1500	_	36%
CLIC3000	_	9%
FCC-ee 240	_	_
FCC-ee 240/365	44%	_
FCC-ee (4 IPs)	27%	_
FCC-hh	-	3.4-7.8%

[arXiv:1910.00012, arXiv:2211.11084]

ONLY VALID FOR $\lambda = \lambda_{\mathsf{SM}}$

• Higgs self-coupling precision dependent on value of λ itself

Precision on Higgs self-coupling with new physics

Precision on Higgs self-coupling with new physics

Conclusion

- Discovery potential of Higgs self-coupling at ILC clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to **better than 20%** at ILC500
- \rightarrow Update to the state-of-the-art projections for ILC is underway at 500, 550 or 600 GeV depending on the decision on E_{CM}
- Complementarity of ZHH and $\nu\nu$ HH measurements to ensure at least 10-15% precision for any value of λ

Conclusion

- Discovery potential of Higgs self-coupling at ILC clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to better than 20% at ILC500
- \rightarrow Update to the state-of-the-art projections for ILC is underway at 500, 550 or 600 GeV depending on the decision on E_{CM}
- Complementarity of ZHH and $\nu\nu$ HH measurements to ensure at least 10-15% precision for any value of λ

Thank you.

Backup

Strategy for improving the Higgs self-coupling measurement at ILC

$\begin{array}{l} \textbf{Overlay removal} \\ \gamma\gamma \rightarrow \mathsf{low-}p_{T} \ \mathsf{hadrons} \\ \mathsf{Expect} \ \langle \textit{N}_{\textit{overlay}} \rangle = 1.05 \ \mathsf{event} \ \texttt{@} \ \texttt{500} \ \mathsf{GeV} \end{array}$

Better modelling of the γγ overlay
 Advanced overlay removal strategy

Isolated lepton tagging

Optimised for $\ell = \{e, \mu\}$

The dicated search for aus

 $\begin{array}{l} \mbox{For } \varepsilon_\tau \sim \varepsilon_{e,\mu} \\ \rightarrow 8\% \mbox{ relative improvement in} \\ \Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} \end{array}$

Jet clustering

Perfect jet clustering

 $\rightarrow \sim 40 \rm \%$ relative improvement in $\Delta \sigma_{\rm ZHH}/\sigma_{\rm ZHH}$

Flavor tagging

- Improve b-tagging efficiency
 - For 5% relative improvement in $\varepsilon_{b\text{-tag}}$ $\rightarrow 11\%$ relative improvement in $\Delta\sigma_{\rm ZHH}/\sigma_{\rm ZHH}$

Error parametrisation in kinematic fitting Mass resolution \propto iet energy resolution

Errorflow: Energy resolution parametrisation for individual jets

Dijets in misclustering categories

b and c hadron decay length

- only weak decay b and c hadrons
- simple distance calculation between vertex and endpoint of the hadron
- does not account for magnetic field