

Taikan Suehara (Kyushu)

ILD測定器

- Vertex (6層, r = 15-60 mm)
 - モノリシックシリコン
 - Pixel size 5-25 μm
 - 0.1% X₀/layer
- Silicon tracker (SIT/SET/ETD)
 - SIT(内層): Pixel?
 - SET(外層): strip (LGAD?)
 - ETD(endcap)
- 中央飛跡検出器 (TPC)
 - ・ 端部読み出し: pad / Si pixel
- 電磁カロリメータ (ECAL)
 - W / sensor 20-30層
 - シリコンパッド/シンチレータ
- ハドロンカロリメータ (HCAL)
- Coil (3.5T) / Yoke / Muon

シリコンタングステン電磁カロリメータ

センサーとPCBの接続

浜松ホトニクス製 シリコンセンサー (9cm角、256セル)

センサー40万枚を用いる 大規模な測定器システム 信頼性の高い接続方法が必須

フロントエンド基板 (180 mm角) 64チャンネル読み出し可能なASIC (フランスで開発)を16個搭載 裏面は電極になっており、 センサーと導電性接着剤で接続

ディスペンサー、ロボットによる接着剤滴下

2液混合室温硬化 導電性接着剤 (EPO-TEK E4110-LV)

1. 接続に関する課題

- 接続が経年劣化?(数年)によりはがれてしまう問題が発生
 - センサーが物理的に剥がれてしまう場合と 一部読めなくなる場合がある
- 考えられる原因
 - センサーとPCB間の応力
 - ・温度、湿度による影響
 - 接着時の応力(真空吸着、加圧)
 接着を確実にするために上から押さえている
 - 接着剤の劣化・滴下時の気泡など
 - ・粘度が低いので気泡は入りそうもないが…

1. 接続に関する課題 (続き)

- 原因をどう究明するか?
 - 応力を測定
 - センサーとPCBの間にピエゾゲージを入れてみる (しかし接着剤にかかる力そのものではない)
 - •その他の方法は?
 - X線による内部観察 (glue dotの劣化)
 - 接着力の測定(再現性が取れるか?)
- 考えられる対応
 - 応力をかけずに接着する(接着時の問題なら)
 - PCB/シリコンの表面状態をコントロール(洗浄など)
 - 接着剤の選択最適化
 - 非導電接着剤で隙間を埋める
 - 別の方法(右記) ただし大きな設計変更になる

別の方法

- フレキ基板に接着 (ASIC接続の問題あり)
- 接続点を小面積に集約 (たわみの影響小)
 - 導電性接着剤 (現在と同様)
 - 異方性導電シート(ACF)
 - Bump-bonding
 - 他

フランスでやっているフランスでやろうとしている

Metrology and PCB Deformation

Setup of a device to measure the flatness of the PCB at different stages
PCBs will be out into cabling machine and dimensions will be monitored before and afterwards

Glue – Alternative agents and procedures

- After discussion with Astronomy Institute of Paris and Epotek
- Test glue of type H20E as alternative to Epotek J2189
 - Should have higher mechanical stability
- •Use EPOTEK 301-2 as underfill for mechanical stabilisation (proposal of Epotek)
 - •This underfill has low viscosity that ensures mechanical stability by capillary effect
 - First tests promising underfill flows across the PCB, need to control polymerisation
- Alternative proposal EPOTEK 353ND-T
 - •Epoxy for gluing electrical component, could be used to stabilise glued sensor at sensor boundaries
- Alternative with double sided scotch about to be studied
- 25 sheets arrived last week, 10 on their way to IFIC
- Further contact with Technacol, a lab specialised on polymers for technology transfer to industry

Pull tests

•IJCLab prepares pull tests in order to get a quantitative picture of the mechanical stability of the glue

DESY, CNRS-IJCLab, CNRS-LLR, FZU, JGU

2. <10ピコ秒タイミング測定

- 粒子の飛来時間を10ピコ秒で捉える
 - 粒子の速度と運動量から質量を決定
 - ・ 光速に極めて近い(β >0.99)ため高精度測定が必要
 - 粒子のクラスタ分離に活用
- 実現には様々な要素技術が必要
 10~30ピコ秒の分解能を持つ高速センサー
 アバランシェ増幅機構つきシリコンセンサーなど
 高密度、高分解能、低消費電力の読み出しASIC
 高密度実装(例: 10cm角, 0.6 cm厚で1024セル)のため 発熱低減・放熱が課題
 - 高精度クロック同期
 - 多数の測定点を平均して精度向上を図る
 - シャワー発展の時間構造を再現する深層学習等のintelligentなソフトウェア

ß (p) $\Delta t (K/p)$ $\Delta t (\pi/K)$ Energy 30 ps 5 GeV 0.9996 0.99510.9822 88 ps 10 GeV 0.9999 0.99880.9956 7 ps 21 ps

粒子のエネルギーと 同定に必要な時間 分解能

2. <10ピコ秒タイミング測定 (続き)

主な時間分解能決定要因: $\sigma_t^2 = \sigma_s^2 + \sigma_n^2$

- σ_s²: センサーの時間分解能
 - 電荷収集時間のばらつき:シリコンの場合はセンサー内での電荷のドリフト時間に 起因し、電荷発生領域を薄くする(ただし信号強度は下がる)ことで低減できる。この 場合アバランシェ増幅機構が必要。光検出の場合、発光時間や発光体の形状によ るセンサーへの光の到達時間のばらつきが問題となる。

• σ_n^2 : 電気回路に起因する時間分解能

- ランダムノイズ: 立ち上がり時間とS/N比による。立ち上がり時間はセンサーの容量 と電子回路で決まる。シリコンでは典型的な元電荷は800 e⁻/μm程度でσ_sを抑える ため厚みは数十μm以下、ゲインは通常100~1000程度。容量は例えば数 10pF/cm²程度で容量を抑えるにはセンサーを細かく分割する必要がある。
- 立ち上がり時間が早く(例えば100-200ps)、高集積、低消費電力の回路は実現可能 か? (時間分解能は電力の2乗に比例?)

センサー技術、エレキ技術

- ゲインが高く、感度層が薄いセンサ<u>-</u>
 - 信号量として10fCくらいはほしい。
 - 感度厚10 µmで達成するには Gain ~ 100が必要
 - 薄いとhigh gainが困難?
- もしくはガイガーモードのセンサー

- d=200um, Landau r.m.s.
- --- d=200um, PAI r.m.s.
- ---- d=200um, PAI sigma
- d=50um, Landau r.m.s.
- --- d=50um, PAI r.m.s.
- ---- d=50um, PAI sigma

- SPAD-like, でもpixel sizeが細かい必要がある。(capacitance)
- 読み出し、monolithic or hybrid
 - 高速応答、低消費電力は可能か

加速器のパルスに同期、300 nsecごとにa few ns程度のレンジ

Backup

Avalanche Detectors (LGAD / SPAD)

- Difficult to get high S/N with thin sensors
 → Avalanche gain
 - Already widely used in optical detectors (APD/SiPM)
 - Linear region: Low Gain Avalanche Detector (LGAD)
 - Developed for HL-LHC pileup separation (ATLAS HGTD / CMS MTD)
 - G = 10-100, radiation tolerance OK (with increasing HV)
 - Finally dominated by Landau fluctuation (~30 psec with current structure)
 - Geiger region: SPAD-like structure
 - Thinner active layer: lower Landau fluctuation
 - Higher gain: easier electronics for high S/N
 - Dark count: not suitable for calorimetry?

Various structures of LGADs

Reach-through LGAD

- Standard structure well investigated
- Resolution limited to 30 psec
- Issue: inactive region
 between channels → AC-LGAD / inverse

AC LGAD: AC-coupled electrodes with planar gain layer: good for strips Rather big crosstalk to neighbor channels

Inverse LGAD (single sided)

- The same structure as reverse APD
- Current structure has 5-10 μm active thickness (confirmed with ion injection)
 - \rightarrow too thin (limited by the production process)
- Intrinsically low Landau Fluctuation
- Relatively flat multiplication expected (tbc)
- Lower cross talk than AC-LGAD expected (tbc)

Monolithic LGAD with SiGe process

Timing resolution with LGAD

MIP timing resolution of 10 psec
 → ~10 µm thickness needed
 → higher gain (>100) necessary

LGAD Landau fluctuation: worse than standard Si (because only electrons contribute the timing resolution)

Issues in the readout:

- Capacitance needs to be small → smaller pixels, more channels
 → many technological issues (connection, amplifier, readout, software...)
- High density readout (with ASICs) \rightarrow power consumption (P ~ 1/sqrt(σ_t) ?)
- Monolithic LGAD?

Waveform analysis

- Separate Landau fluctuation from noise contribution
- Compare reach-through and inverse types
 - RS: S3884 (1.5 mm φ, 10 pF) @ 183V
 - Inverse: S8664-20K (2 mm φ, 11 pF) @ 420V
- Readout
 - 3 GHz discrete amp (mini-circuit GALI-S66+)
 - R&S RTO64 Oscilloscope
 - 2GHz analog bandwidth, 10 GSPS
- Source
 - ⁹⁰Sr β source, self triggering

Serving 2 GHz oscilloscope Taikan Suehara, シリコンセンサーに関する開発課題 for 産総研, 26 Jul. 2023 page 15

Electronics & sensors

3 GHz amplifier board (designed by K. Nakamura (KEK)

Mini-Curcuits GALI-S66+ https://www.minicircuits.com/WebStore/ dashboard.html?model=GALI-S66%2B

APDs	Туре	Size [mm]	Capacitance [pF]
S8664-20K	Inverse	2φ	11
S3884	Reach-through	1.5 \$	10
S8664-30K	Inverse	Зф	22
S2385	Reach-through	Зф	95
S8664-55	Inverse	5 x 5	80

S2385 (95 pF)

Waveforms

Average of ~30 waveforms Smaller capacitance → faster rise time Subtle differences by RS and inverse APDs

S3884 (10 pF)

S8664-30K (22 pF)

S8664-20K (11 pF)

S8664-55 (80 pF)

Fitting of waveforms

1. Average waveform obtained with a few 100 waveforms (Synchronizing timing of 50% height of signal) 2. Fitting individual waveforms for amplitudes and timing by the average waveform 3. Evaluating deviation of timing between fitted spectra and waveforms

- 20% height
- 50% height
- 80% height

Fitted waveforms

S3884 (RS)

Pedestal contribution

- Difficulties
 - Limited bandwidth (2 GHz, 10 GSPS & 3GHz amplifier)
 - Individual points (10 GHz) have correlation to neighbor points
- Pedestal contribution
 - Using "pre-time" waveforms
 - Adding to "average" spectrum at rising edge
 - Do the same analysis

Comparison: signal vs pedestal

S3884 (RS)

h20 h20 60 50 40 20 10 20% height Entries 3966 Mean -0.6302Std Dev 4.753 χ^2 / ndf 531.7 / 252 45.15 ± 1.08 Constan Mean 0.4072 ± 0.0601 Sigma 3.044 ± 0.053 -200 psec +200 psec h50 Entries 3966 50% height 80 60 40 20 Mean 0.4635 Std Dev 2.458 χ^2 / ndf 446 / 160 Constan 71.84 ± 1.72 0.6429 ± 0.0452 Mean Sigma 1.962 ± 0.034 h80 Entries 3966 1.107 Mean 80%height Std Dev 2.887 γ^2/ndf 516.3/212 60 40 20 Constan 87.49 ± 2.28 Mean 0.6122 ± 0.0278 Sigma 1.447 ± 0.028 x10 psec

Comparison: signal vs pedestal

S8664-20K (inverse)

pedestal

Results

	Signal reso [psec]	Pedestal reso [psec]	Quad difference [psec]
S3884 (RS)			
20% height	30.4	6.9	29.6
50% height	19.6	5.2	18.9
80% height	14.5	8.9	11.4
S8664-20K (inverse)			
20% height	11.5	6.2	9.7
50% height	7.5	4.9	5.7
80% height	18.4	8.6	16.3

Inverse type indicates smaller Landau fluctuation Note: this does not directly reflect the timing resolution (due to correlation of points)

Test beam needed to identify "overall" timing resolution

• Too much material on APD packaging for RI test with "double-tag"...