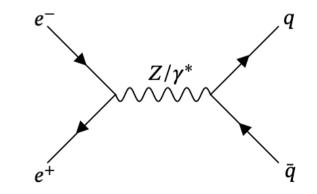
Prospects for Gauge-Higgs Unification models in $e^+e^- \rightarrow qq$ production ILC250/500 at ILD using PID capabilities

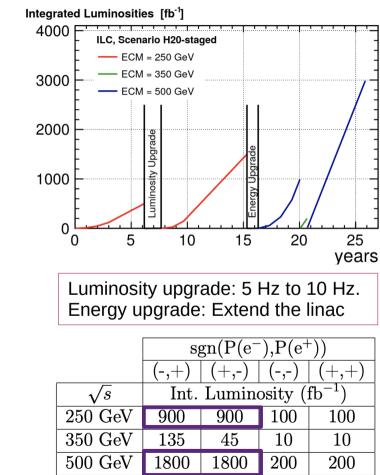
ILD Software & Analysis meeting

2/08/23


Jesús P. Márquez Hernández

Outline

- **Direct production** (Z/g/Z') of heavy-quarks (b&c) at high energies.
 - Precision measurement of EW couplings.
- BSM framework: Gauge-Higgs Unification (GHU).
 - Phenomenology of two kinds of models (A & B).
- Physical observables at ILC250/500.
 - Hadronic fraction (R_q) and Forward-Backward asymmetry (A_{FB}).
- **TPC PID** role in Flavour Tagging & Charge measurement.
- Discrimination power for GHU's Models.

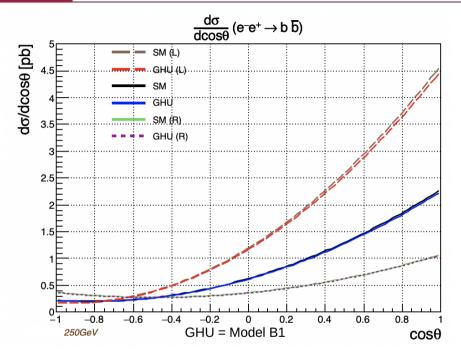


ILC physics program

- The ILC is more than a Higgs factory:
 - It provides access to all SM particles.
- It also features polarized beams $P(e^{-},e^{+})=(0.8,0.3)$.
 - Allow us to inspect all 4 helicity amplitudes:

 $\frac{d\sigma_{XY}^{qq}}{d\cos\theta}(\cos\theta) \approx \frac{s}{32\pi} \left\{ \left(1 + \cos\theta\right)^2 \left|Q_{e_X q_X}\right|^2 + \left(1 - \cos\theta\right)^2 \left|Q_{e_X q_Y}\right|^2 \right\}$

- It can aim for specific processes by adjusting:
 - Center-of-mass energy.
 - Beam polarisation.
- ILC run plan:
 - 4 different energies: Z-Pole, **250**, **500**, 1000 GeV.
 - 4 different polarisation configurations:
 - ► sgn(P(e⁻),P(e⁺)) = (+,-), (-,+), (+,+), (-,-)



- GHU [Hos. et al] models unify all forces under the same gauge group. It's defined in a Randall-Sundrum metric (5D).
- The symmetry breaking pattern is different than in the SM and features the so-called *Hosotani's mechanism*.
 - **Only one parameter**, ϕ_{H} , determines the projection of the 5D fields, fixing all physical effects:
 - **KK-resonances** of $Z/\gamma!$
 - But m_{kk} ~10 TeV, only indirect measurements.
 - Effects in **EW couplings/helicity amplitudes**.
 - Deviations from SM scale with energy:
 - It start being noticeable at 250 GeV!
 - We distinguish **A-Models** and **B-Models**.
 - A-Models are more sensitive to Right-Handed helicity & B-Models to Left-Handed helicity.
 - A-Models (1705.05282) & B-Models (2006.02157).
 [Funatsu, Hatanaka, Hosotani, Orikasa, Yamatsu]

Projection of couplings and EW mixing angle:

$$g_Y^{5D} = \frac{g_A g_B}{\sqrt{g_A^2 + g_B^2}} \sin \theta_W^0 = \frac{s_\phi}{\sqrt{1 + s_\phi^2}}$$

Observables

- Hadronic fraction (R_q):
 - Quark ID (flavour tagging).
 - Angular measurement *possible*, but not needed.
- Forward-backward asymmetry (A_{FB}):
 - Quark ID + charge measurement.
 - Angular measurement needed.

 $R_q = \frac{\sigma_{e^-e^+ \to q\bar{q}}}{\sigma_{hadron}}$

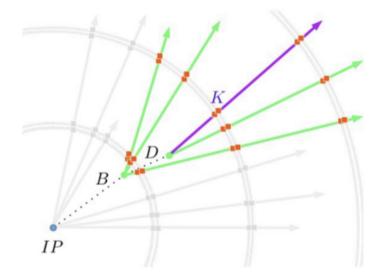
$$= \frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\int_{-1}^1 \frac{d\sigma}{d\cos\theta} d\cos\theta}$$

Normalized & **differential** observables are highly preferred: Control of systematic uncertainties.

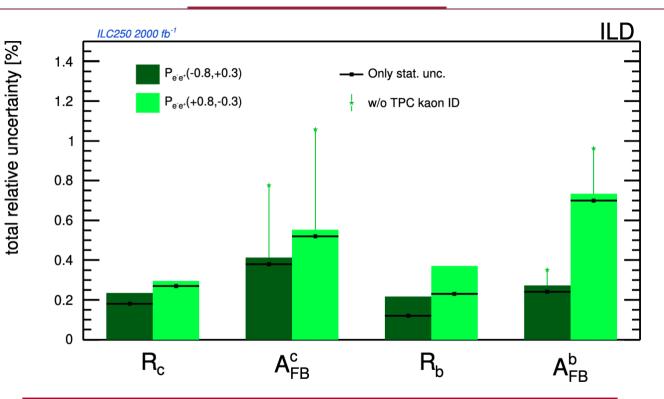
> Up to a total of *16 different measurements*. But this talk **will only explore result on AFB**.

$$A_{FB}^{Exp} = \frac{N_F - N_B}{N_{Total}}$$
$$R_q^{Exp} = \frac{N_q}{N_{hadron}}$$

 $A_{\rm FB}$



Preselection of bb & cc signals


- Experimental procedure:
 - Preselection of $q\overline{q}$ events.
 - Removal of backgrounds.
 - Mostly radiative return.
 - Up to x10 more data than the signal!
 - Flavour tagging.
 - Using standard ILD Tool: LCFI+.
 - Boosted Decision Trees (ROOT TMVA).
 - Jet charge measurement:
 - VTX method: Use all secondary tracks.
 - Kaon method: Use TPC's kaon PID

Double Tag method: *Only* events with 2 opposite-charged identified jets are accepted.

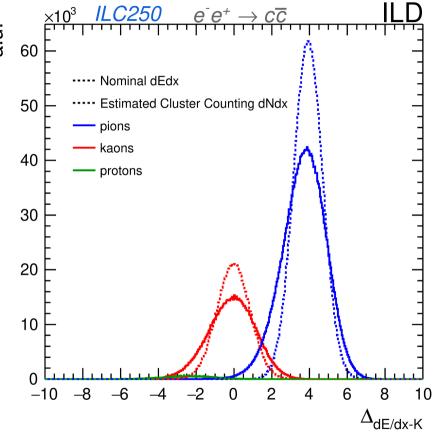
Previous work for Rq and A_{FB} (250 GeV)

Full Simulation Study. Public ILD Note (2306.11413)

A. Irles, R. Poeschl, F. Richard (K. Fuji, M. Berggren as ILD PSB Ed. members)

Kaon ID in R_q and A_{FB} (250 GeV)

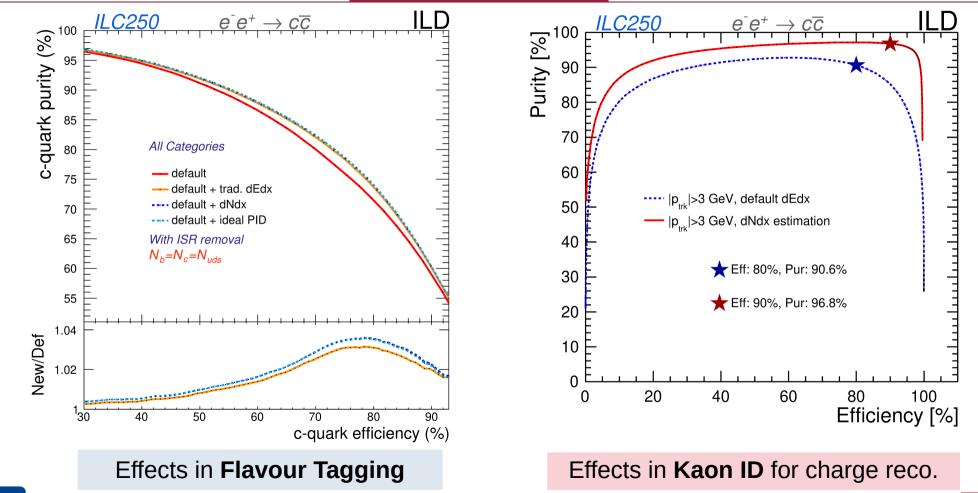
- Note how:
 - \circ R_q are not affected by Kaon ID, since we only need flavour tagging.
 - A_{FB} highly depends of identifying Kaons for charge measurement.
 After applying the **double-charge** selection criteria:
 - B-jets: Only ~18% of events survive.
 - Of which ~40% requires PID.
 - C-jets: Only ~4% of events survive.
 - Of which ~90% requires PID!



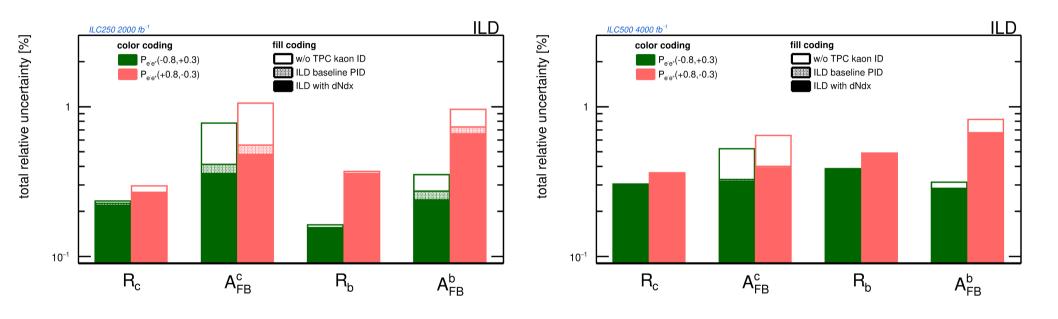
Improving the use of TPC PID

New ways to improve the use of TPC-PID:
 Include PID in the Flavour Tagging (LCFI+).
 More details in back-up & poster!
 Improve the PID performance itself.
 From traditional dEdx to cluster counting method (+35%[1] in K/p separation power!)

PID information is rewritten by an ILCSOFT processor which estimates the expected improvements we'd have when working with Cluster Counting (dNdx).



[1] Y. Aoki et al., Double hit separation and dE/dx resolution of a time projection chamber with GEM readout, JINST 17 11 (2022) P11027, arXiv: 2205.12160 [physics.ins-det]



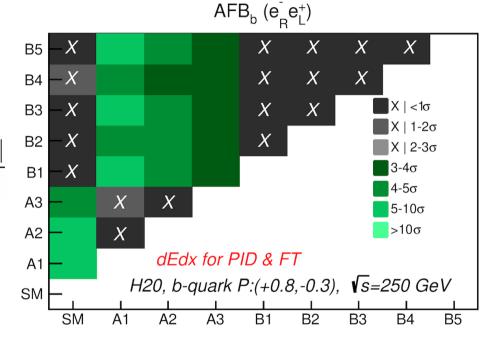
Effects of improving the use of PID

Uncertainties for R_q and A_{FB} (250 & 500 GeV) IFIC

Full Simulation Studies. Proceedings for LCWS2023: arXiv 2307.14888

A. Irles, J. P. Márquez | Reviewed by A. Ruiz (as ILD PSB Ed. member)

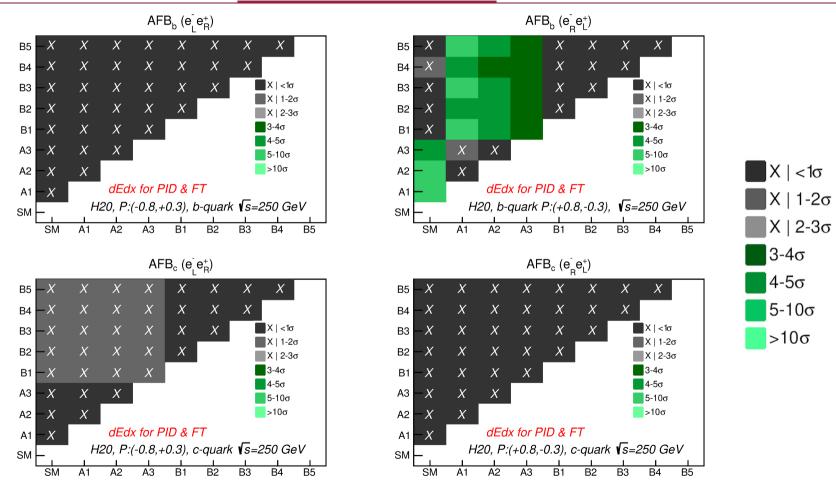
08/23


12

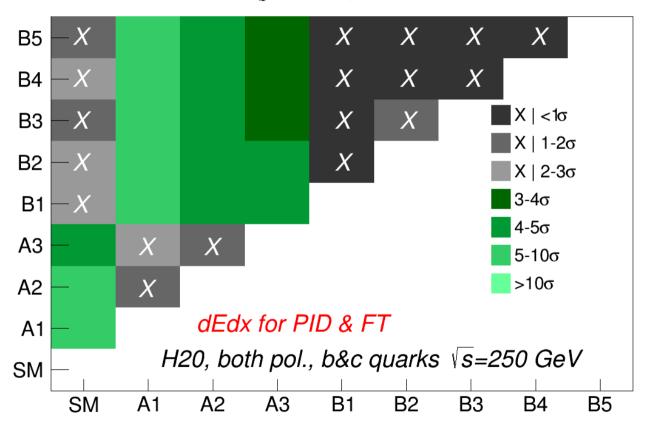
Discrimination of BSM Models

- Assumption: A measurement of one specific model is conducted.
 - Row/Column combination for comparison.
 - The uncertainties are considered normally distributed:
 - Significance in σ : $d_{\sigma} = \frac{\|AFB_{test} AFB_{ref}\|}{\Delta_{AFB_{ref}}}$

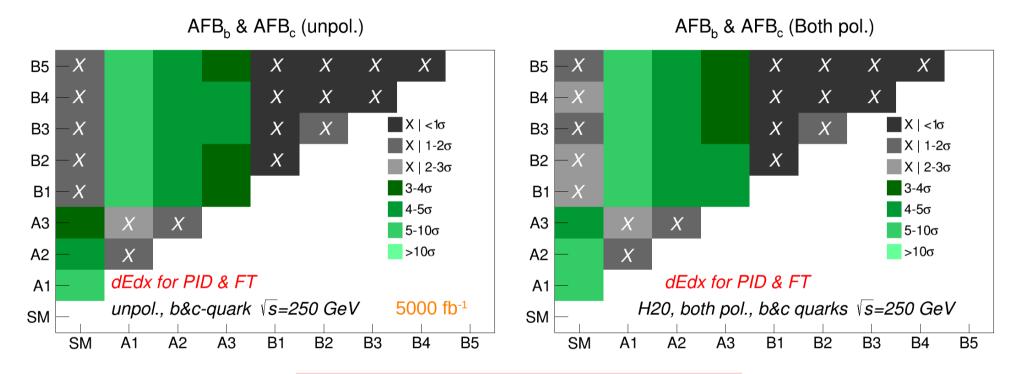
0


- P-value: Gaussian at d_{σ} .
- Combination of multiple measurements is done with a *multivariate gaussian*.
 - Assuming no correlations for A_{FB} .

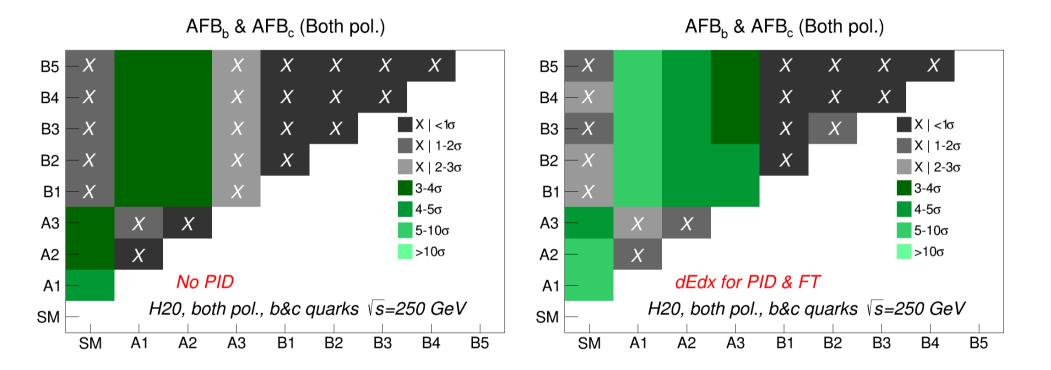
GHU's Models ILC250



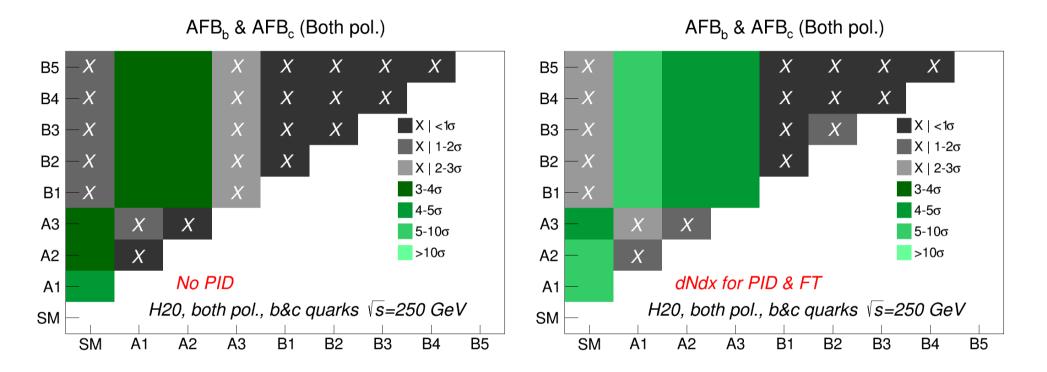
GHU's Models ILC250 (combined)


AFB_b & AFB_c (Both pol.)

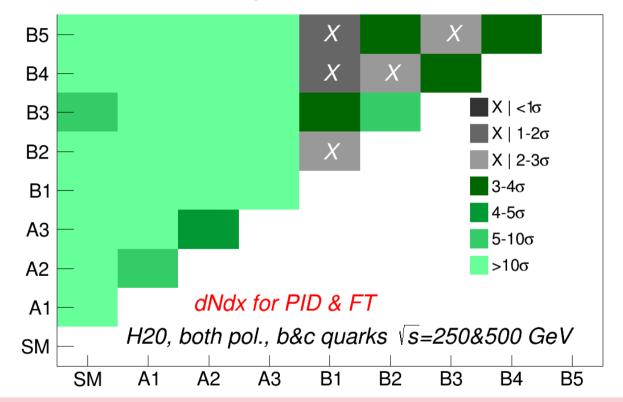
GHU's Models ILC250 (Polarisation)



Effects of polarised beams at 250 GeV


GHU's Models ILC250 (TPC impact)

We do need TPC PID to discriminate these models


Using dNdx optimises the use of the TPC

GHU's Models ILC250+500

AFB_b & AFB_c (Both pol.)

Accessing **higher energies** is a key factor to discriminate these models!

Summary/Conclusions

- ILC+ILD are powerful tools to discriminate BSM Models thanks to:
 - Polarisation.

Up to 8 different measurements per energy!

- Energy range.
- Key role of TPC PID.
 - Flavour Tagging & jet charge reconstruction.
- There's still work to do:
 - More than H20: Giga-Z? 1 TeV?
 - R_q and statistical combinations!
 - What about other BSM models?

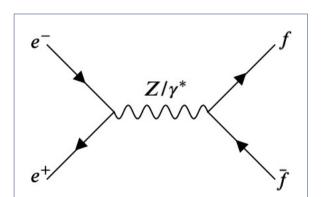
Thanks for your attention!

BACK-UP

General

Observables

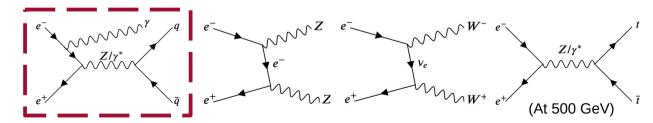
- Differential Cross-Section:
 - General case with polarisation dependence:

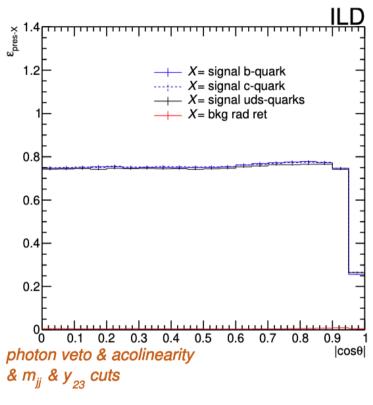

$$\frac{d\sigma^{f\bar{f}}}{d\cos\theta}(P_{\rm e^-},P_{\rm e^+},\cos\theta) = (1-P_{\rm e^-}P_{\rm e^+})\frac{1}{4}\left\{(1-P_{eff})\frac{d\sigma^{f\bar{f}}_{LR}}{d\cos\theta}(\cos\theta) + (1+P_{eff})\frac{d\sigma^{f\bar{f}}_{RL}}{d\cos\theta}(\cos\theta)\right\} \qquad P_{\rm eff} \equiv \frac{P_{e^-}-P_{e^+}}{1-P_{e^-}P_{e^+}}$$

• Polarization contributions:

$$\frac{d\sigma_{LR}^{ff}}{d\cos\theta}(\cos\theta) \simeq \frac{s}{32\pi} \left\{ (1+\cos\theta)^2 |Q_{e_L f_L}|^2 + (1-\cos\theta)^2 |Q_{e_L f_R}|^2 \right\}$$
$$\frac{d\sigma_{RL}^{f\bar{f}}}{d\cos\theta}(\cos\theta) \simeq \frac{s}{32\pi} \left\{ (1+\cos\theta)^2 |Q_{e_R f_R}|^2 + (1-\cos\theta)^2 |Q_{e_R f_L}|^2 \right\}$$

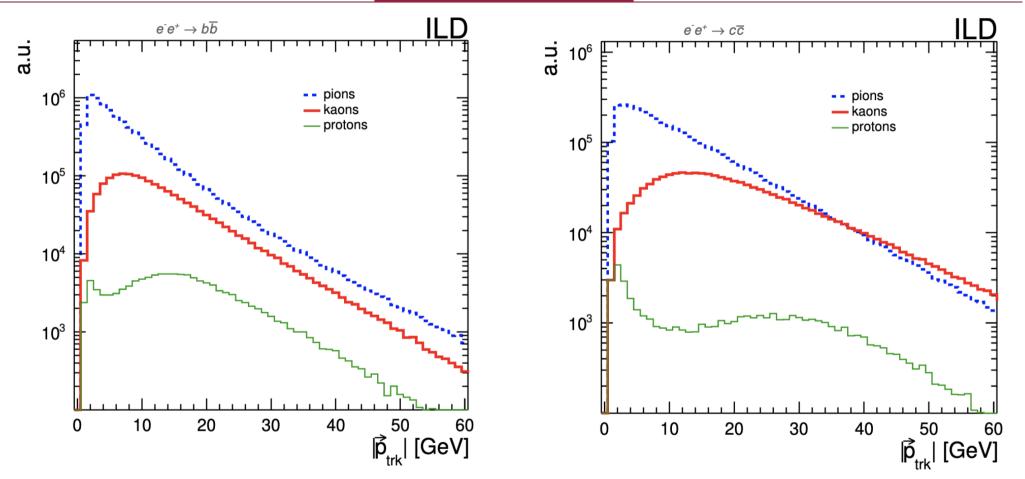
- Helicity amplitudes from the s-channel (may include BSM mediators):
 - They could only be inspected by using polarisation.


$$Q_{e_{X}f_{Y}} = \sum_{i} \frac{g_{V_{ie}}^{X} g_{V_{if}}^{Y}}{(s - m_{V_{i}}^{2}) + im_{V_{i}} \Gamma_{V_{i}}}$$



Preselection of q\overline{q} signals

- ILCSOFT cluster the pfos in jets (VLC algorithm):
 - The algorithm packs together the PFOs into two backto-back jets.
 - $^\circ$ Most of the data is background! (~x10).
 - Most of the background is **radiative return (yqq)**.
 - Most of the backgrounds (ZZ, WW, ISR, tt) are removed with topological, kinematical and energetic cuts.
 - And additional cut by identifying photon pfos in the detector is used for ISR.
 - PFA detector!

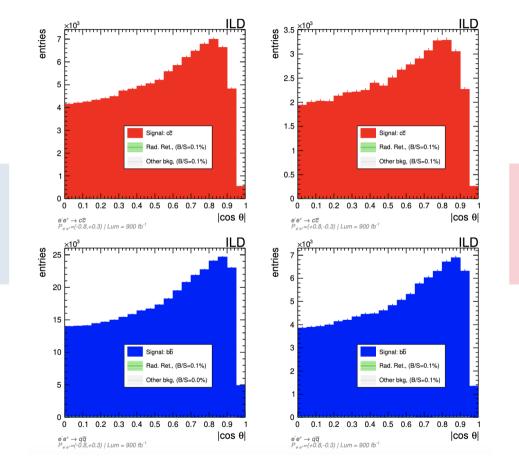


Source	$e^{-}e^{+} \rightarrow c\overline{c}$			$e^-e^+ { ightarrow} b\overline{b}$				
	$P_{e^-e^+}(-0.8,+0.3)$		$P_{e^-e^+}(+0.8,-0.3)$		$P_{e^{-}e^{+}}(-0.8,+0.3)$		$P_{e^{-}e^{+}}(+0.8,-0.3)$	
	R_c	$A_{FB}^{car{c}}$	R_c	$A_{FB}^{car{c}}$	R_b	$A_{FB}^{bar{b}}$	R_b	$A_{FB}^{bar{b}}$
Statistics	0.18%	0.38%	0.27%	0.52%	0.12%	0.24%	0.23%	0.70%
Preselection eff.	<0.01%	0.12%	0.02%	0.16%	<0.01%	0.08%	0.06%	0.12%
Background	0.01%	0.01%	0.02%	0.02%	0.01%	0.01%	0.06%	<0.01%
heavy quark mistag	0.11%	<0.01%	0.06%	<0.01%	0.12%	<0.01%	0.22%	<0.01%
uds mistag	0.03%	<0.01%	0.02%	<0.01%	0.08%	<0.01%	0.14%	<0.01%
Angular correlations	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%
Beam Polarisation	<0.01%	<0.01%	0.02%	0.01%	<0.01%	0.01%	0.03%	0.15%
Systematics	0.15%	0.16%	0.12%	0.19%	0.18%	0.13%	0.29%	0.22%
Total	0.24%	0.41%	0.30%	0.55%	0.21%	0.27%	0.37%	0.73%

Kinematics of secondary tracks

J.P. Márquez - Sw & Ana 02/08/23

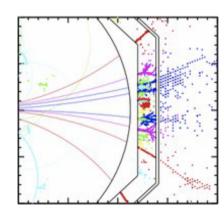
Selection efficiency for A_{FB}

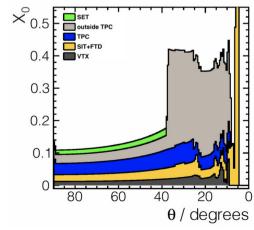

b-quarks & c-quarks

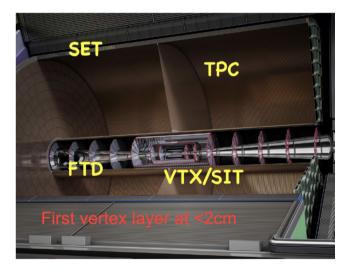
after applying the

double-charge

method to them

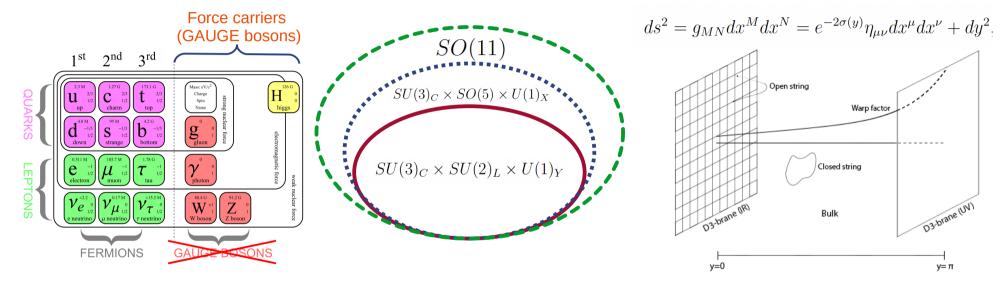

b-quarks & c-quarks Signals are close to:


- Background-free
 - uncorrelated


ILD overview

- ILD: International Large Detector.
 - Excellent resolution:
 - Beam IP constraining capability.
 - Tracking efficiency (>99%).
 - Vertexing.
 - Secondary vtcs and flavour tagging!
 - Compact and hermetic high granularity calorimetry system (>10⁸ cells!).
 - Optimized for Particle Flow Concept, i.e., single particle reconstruction.

ILD: Interim Design Report. ArXiv:1003.01116



Hosotani's Models

In the Hosotani Models the GHU unify all the force carriers under a single gauge group by using an extra physical dimension (Randall-Sundrum metric):

- The breaking pattern is way more complex than in the SM and features the Hosotani's mechanism.
 - Most of the fields are localized in the bulk and we feel the IR-projections.
 - We distinguish **A-Models** (GHU) and **B-Models** (GHU+GUT).

Projection of couplings and EW mixing angle:

$$g_Y^{5D} = \frac{g_A g_B}{\sqrt{g_A^2 + g_B^2}} \sin \theta_W^0 = \frac{s_\phi}{\sqrt{1 + s_\phi^2}}$$

• The metric of the warped Randall-Sundrum space-time:

 $ds^{2} = g_{MN} dx^{M} dx^{N} = e^{-2\sigma(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}$

- This is inspired by conformal symmetry, a.k.a. "scale symmetry"; used in cosmology, string theory and holography.
 - Conformal coordinates:

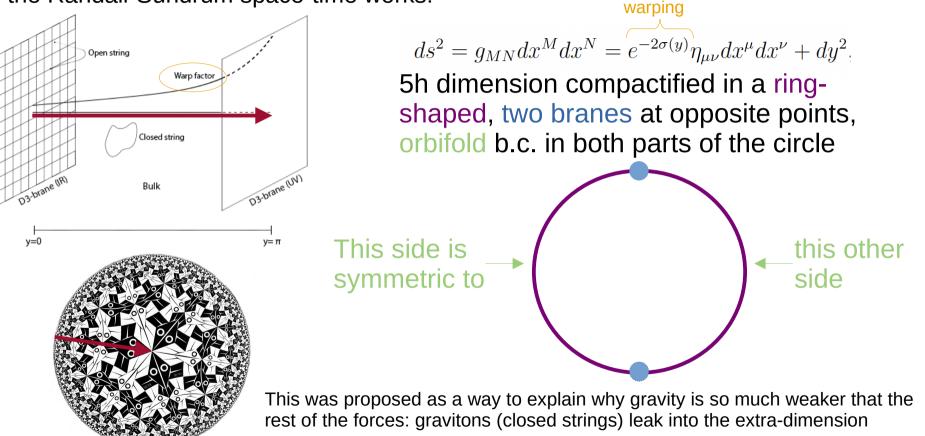
 $z = e^{ky}$

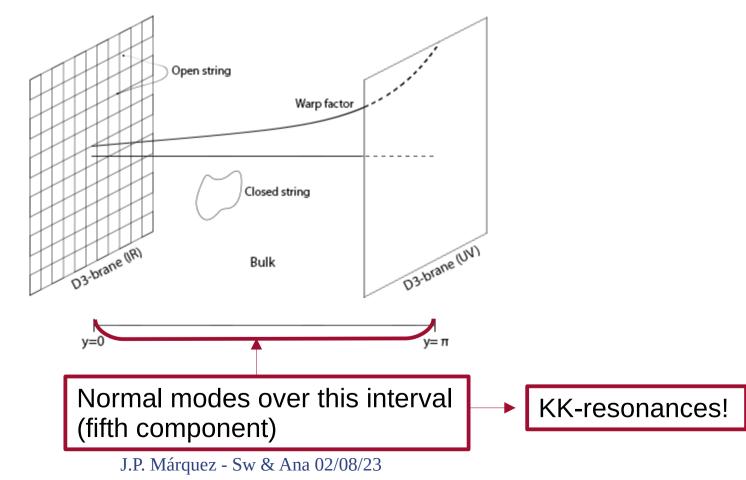
• The metric in conformal coordinates:

$$ds^{2} = \frac{1}{z^{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{dz^{2}}{k^{2}} \right)$$

Extra-dimension (+1D)

Minkowski space-time (4D)


M. C. Escher "Circle Limit 1". Example of conformal symmetry with hyperbolic scaling


• How the Randall-Sundrum space-time works:

• Kaluza-Klein resonances:

- How the Hosotani's Models work:
 - Most of the fields are localized in the bulk and the effects in our brane are projections
 - The original group symmetry is in 5 dimensions
 - The breaking pattern is way more complex than in the SM and features the Hosotani's mechanism

```
SU(3)_C \times SO(5) \times U(1)_X
```

```
 \begin{array}{l} \xrightarrow{} & SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X \  \, \text{at } y = 0, L \\ \\ \xrightarrow{} & O \end{array} \\ \begin{array}{l} \xrightarrow{} & SU(3)_C \times SU(2)_L \times U(1)_Y \  \, \text{by the VEV } \langle \Phi_{(1,4)} \rangle \neq 0 \  \, \text{at } y = 0 \\ \\ \xrightarrow{} & \Theta_H \end{array} \\ \begin{array}{l} & SU(3)_C \times U(1)_{EM} \  \  \, \text{by the Hosotani mechanism,} \end{array}
```


	B-model	A-model		
Quark	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$({f 3},{f 5})_{rac{2}{3}}$ $({f 3},{f 5})_{-rac{1}{3}}$		
Lepton	$(1, 4)_{-rac{1}{2}}^{3}$	$({f 1},{f 5})_0 \; ({f 1},{f 5})_{-1}$		
Dark fermion	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$({f 1},{f 4})_{rac{1}{2}}$		
Brane fermion	$({f 1},{f 1})_0$	$egin{array}{l} ({f 3}, [{f 2}, {f 1}])_{rac{7}{6}, rac{1}{6}, -rac{5}{6}} \ ({f 1}, [{f 2}, {f 1}])_{rac{1}{2}, -rac{1}{2}, -rac{3}{2}} \end{array}$		
Brane scalar	$(1,4)_{rac{1}{2}}$	$({f 1}, [{f 1}, {f 2}])_{rac{1}{2}}$		

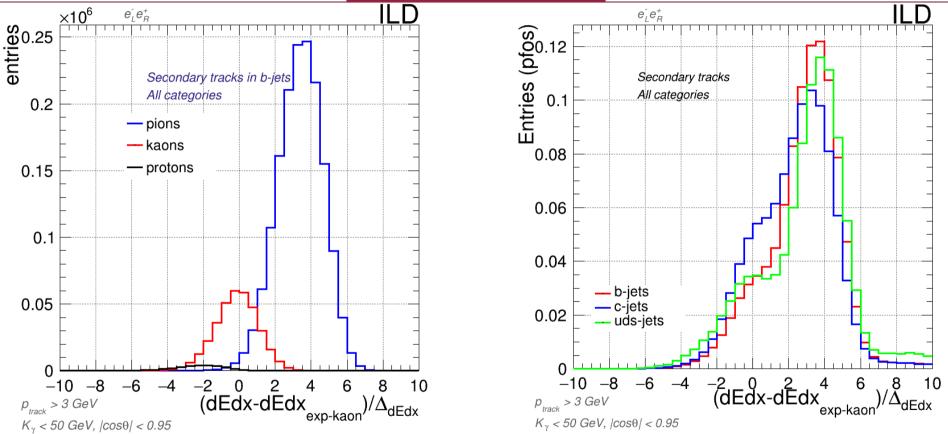
Field content in the group representation

Projection of couplings and EW mixing angle:

$$g_Y^{5D} = \frac{g_A g_B}{\sqrt{g_A^2 + g_B^2}} \quad \sin \theta_W^0 = \frac{s_\phi}{\sqrt{1 + s_\phi^2}}$$

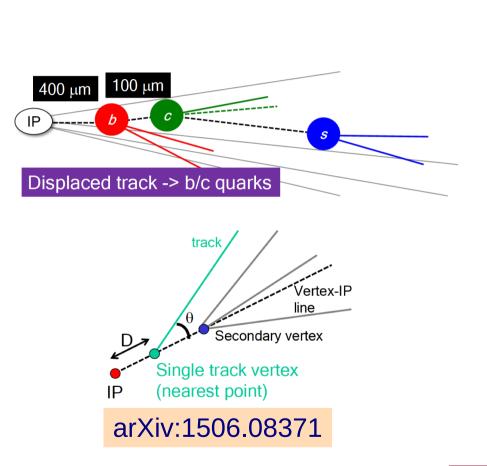
Adding dEdx in LCFI+

dEdx – Preselection of pfos



Adjusting this points to the Bethe-Bloch formula: Estimate PID

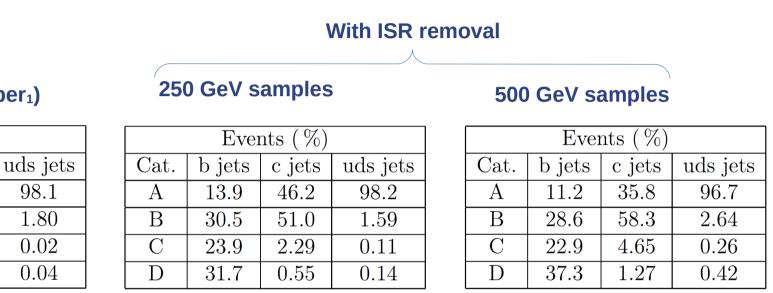
dEdx – KDS for different quark flavours



We repeat this also with Pions and Protons. We build 3 variables NKaonSec, NPionSec & NProtonSec and add them to the FT!

Flavour tagging: LCFI+

- Vertex finder:
 - Reconstruct collinear or close-to-collinear vertexes by merging particle tracks from the event information.
 - $^\circ$ Distance ($\tau_q \cdot c$) from the IP is key for b and c quark ID: Displaced vertexes.
 - We also encounter single track vertexes: pseudo-vertexes.
- Jet Clustering & vertex refiner:
 - Use the vertexing information.
 - Different algorithms could be used (k_T , Durham, VLC, etc.).
 - In our case, we expect two back-to-back jets with ISR.
- Flavour tagging:
 - TMVA (BDT based).
 - 3-class classifier b/c/uds.



Events for each category

Z-Pole (LCFI+ paper₁)

(%)

c jets

59.5

39.8

0.54

0.19

Events (

b jets

22.9

39.7

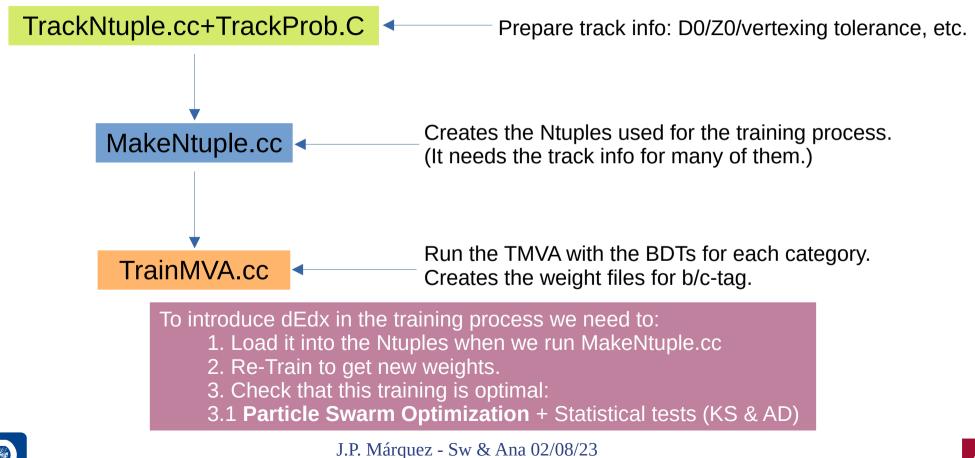
13.5

23.8

Category	А	В	С	D
Number of vertices	0	1	1	2
Number of single-track pseudovertices	0-2	0	1	0

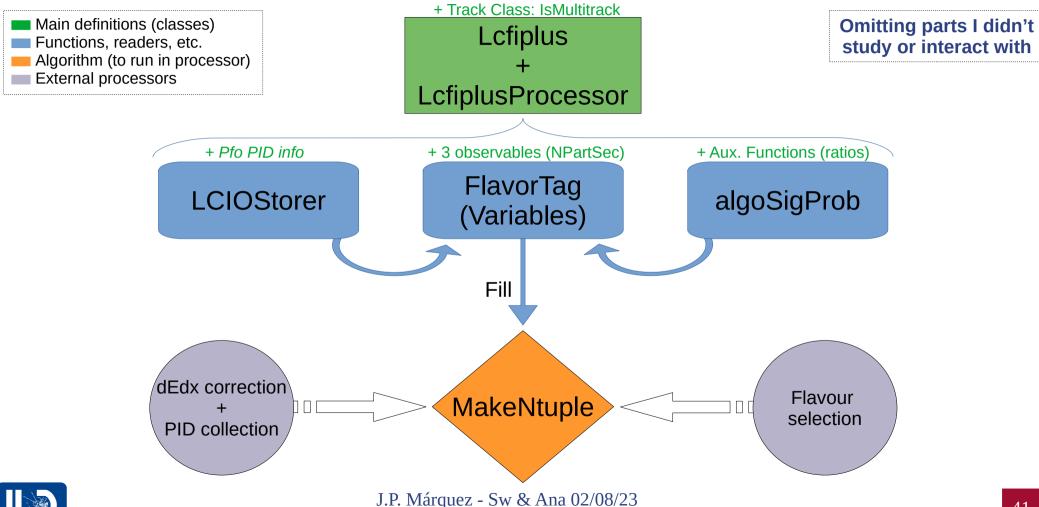
Cat.

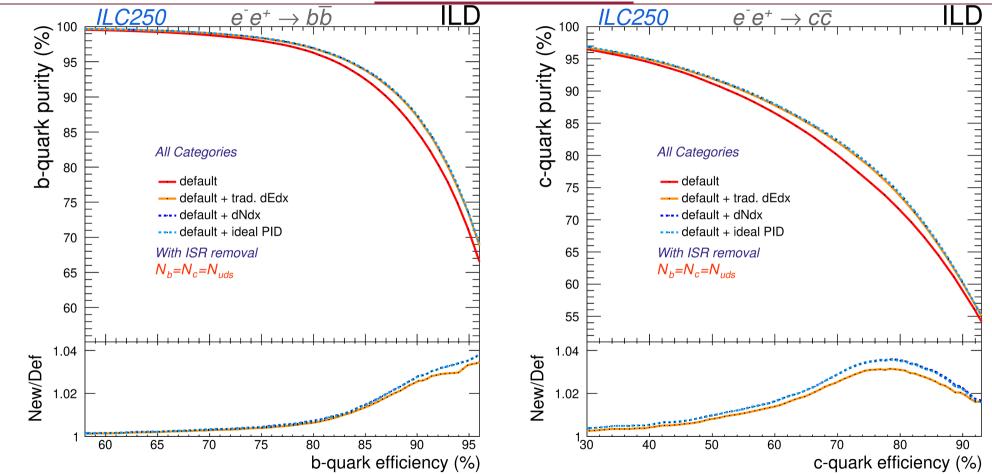
А


В

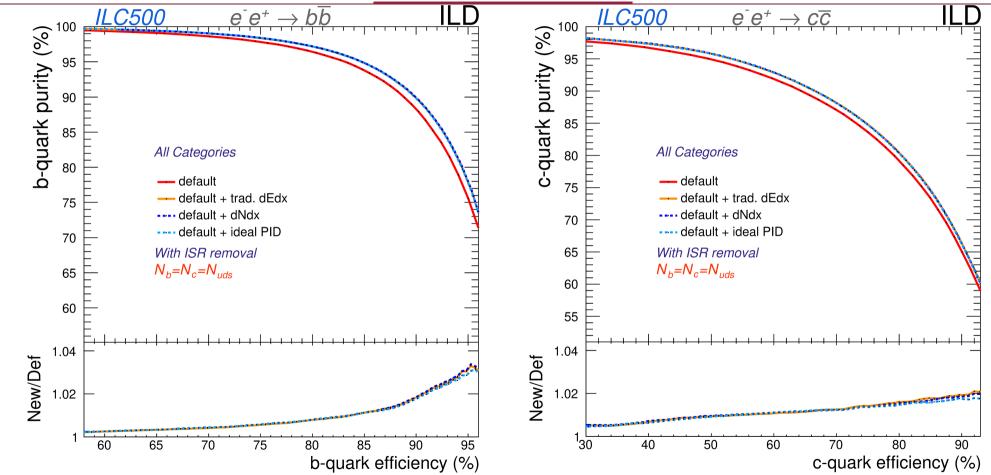
С

D


Re-training flavor tagging (coding)


LCFI+ MakeNtuple Workflow (+dEdx)

Effects of dNdx in Flavour Tagging (250 GeV)



J.P. Márquez - Sw & Ana 02/08/23

Effects of dNdx in Flavour Tagging (500 GeV)

J.P. Márquez - Sw & Ana 02/08/23

Particle Swarm Optimization

Boosted Decision Trees (BDT) - TMVA

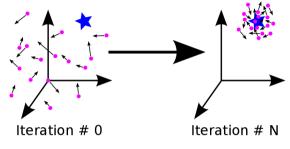
- We are already working with these Gradient Boosted Decision trees using ROOT's Toolkit for MultiVariate data Analysis (TMVA). We use the following parameters:
 - BoostType=Grad.
 - NTrees.
 - Shrinkage.
 - UseBaggedBoost:BaggedSampleFraction.
 - Bagging: A new sampling is performed before each step (removes biases).
 - NCuts (binning used when sampling).
 - MaxDepth (Nº of leaves).

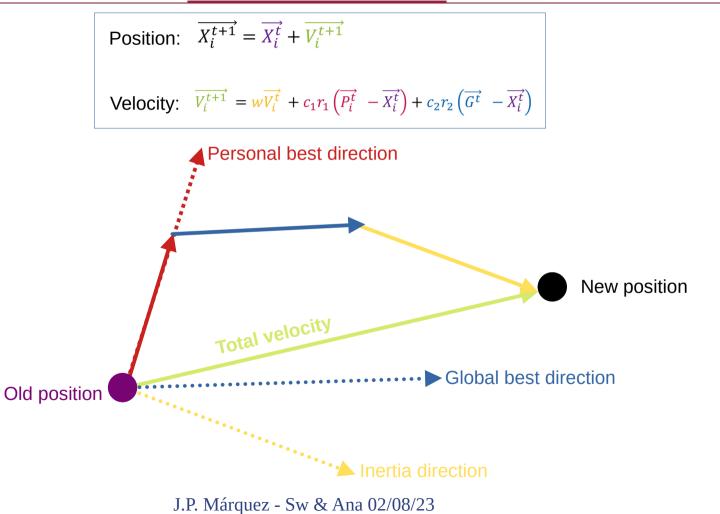
The Particle Swarm Algorithm optimizes the use of *these parameters*

We used all but the orange ones, which are method definitions

PSO - Overview

- Particle Swarm Optimization is a Gradient-free, bio-inspired, stochastic, population-based algorithm to optimize any kind of process towards a certain goal:
 - No maths involved in the optimization (no gradients or loss functions!).
 - It just try configurations and saves the best-performing one.
 - It mimics how animals look for resources, by trial and error.
- How it works:
 - We have N "particles" (in our case: configurations of the BDT). Then:
 - **1)** The BDT runs with the configuration of the particle.
 - 2) When finished, each particle gets a performance score. -We define a Function Of Merit (FOM) for this scoring
 - 3) We track each particle's best configuration and the best global one.
 - 4) The particles move to a new configuration (next slide).




Image taken from a website

For each iteration

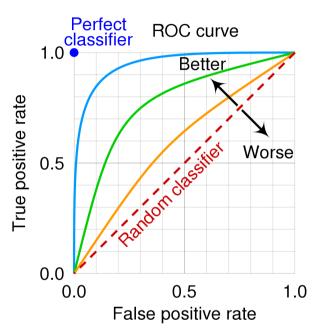
PSO - Overview

PSO – Adaptation to FT in LCFI+

- We need:
 - A 3-class classifier (b quarks, c quarks, uds quarks).
 - We also want to avoid overfitting:
 - Kolmogorov-Smirnov test
 - Anderson-Darling test
 - We need a FOM adapted to 3 different classes.
 - Important remark: A final check is **always needed**:

Trial and error can go wrong sometimes!

Control biased test scores. (more info in back-up)


PSO – Function Of Merit (FOM)

- The FOM being used is the averaged value of the Integral of the Receiver Operating Characteristic curve for each of the 3 data classes.
 - Considering the target class as signal and the others as background.
- Our FOM is simply:

 $FOM = (AUC[b_{quark}] + AUC[c_{quark}] + AUC[uds_{quarks}]) / 3,$

where AUC = "Area Under Curve" (ROC Integral).

