Higgs Physics at the ILC **EPS 2023**

Carsten Hensel, CBPF, 24/08/2023 (on behalf of the ILC IDT WG3)

....ic international development team

Centro Brasileiro de Pesquisas Físicas

UNIDADE DE PESQUISA DO MCTI

Higgs Measurements Higgs ILC

Summary

Why Do We Care About Higgs Physics?

Higgs Portal to Hidden Sectors?

Stability of Universe

 least understood part of the Standard Model
 portal to questions of cosmological relevance

CPV and Baryogenesis

Origin of masses?

Why Do We Care About Higgs Physics?

Higgs Portal to Hidden Sectors?

Stability of Universe

// least understood part of the Standard Model portal to questions of cosmological relevance (side note: outreach homework)

CPV and Baryogenesis

Origin of masses?

Example: Precision Higgs Couplings

Can not only discover BSM physics, but also identify the nature of the BSM by precisely measuring the deviation pattern.

[ILC TDR, arXiv: 1306.6352]

Higgs Measurements Higgs ILC

Summary

Higgs Factories

common: Higgs factory with O(10⁶) Higgs events

differ in energy reach, luminosity, polarisation, project readiness

CE
FCC
CL

TI

	center-of-mass energy	beam polarisation	integrated luminosity	R&D ph	
ЪС	0.1-1.0 TeV	e ⁻ 80% e ⁺ 30%	2 ab ⁻¹ @250 GeV	TDR 2	
PC	90-240 GeV	e ⁻ 0% e ⁺ 0%	20 ab ⁻¹ @240 GeV	TDR 20	
C-ee	90-350 GeV	e ⁻ 0% e ⁺ 0%	5 ab ⁻¹ @240 GeV	CDR 2	
JC	0.35-3 TeV	e⁻ 80% e⁺ 0%	2.5 ab ⁻¹ @1.5 TeV	CDR 2	
7 (not listed: C ³ , Muon Collider, µTristen)					

022

018

2012

Higgs Factories

common: Higgs factory with O(10⁶) Higgs events

differ in energy reach, luminosity, polarisation, project readiness

CE
FCC
CL

TT

	center-of-mass energy	beam polarisation	integrated luminosity	R&D pł
ЪС	0.1-1.0 TeV	e ⁻ 80% e ⁺ 30%	2 ab ⁻¹ @250 GeV	TDR 2
PC	90-240 GeV	e- 0% e+ 0%	20 ab- @240 Cev	TDR 20
C-ee	90-350 GeV	e+ 0%	5 ab ⁻¹ @240 GeV	CDR 2
JC	0.35-3 TeV	e ⁻ 80% e ⁺ 0%	2.5 ab ⁻¹ @1.5 TeV	CDR 2
8	(not listed: C ³ , Muon Collider, µTristen)			

022

3018

2012

Statistics is not Everything

Statistics is not Everything

Higss: ~ 10,000 significance: 5.2

[Ogawa, PhD thesis (Sokendai 2018)]

Detectors at the ILC

- physics driven requirements
- decades of extensive detector R&D
- (push-pull configuration)

✤ 5T field more compact (than ILD) all Si tracking

- $^{\text{(m)}}$ optimized for $\sqrt{s} = 90 \,\text{GeV}...1 \,\text{TeV}$
- Si/gaseous tracking

ILC Project Status

Construction Phase ~10 years for the construction and commissioning

under discussion (not government approved)

Higgs Measurements Higgs ILC

Summary

ILC Higgs Factory Roadmap

250 GeV

mass, spin, CP nature, absolute measurement of HZZ, BRs Higgs \rightarrow qq, ll, VV

350 GeV

top threshold: mass, width, anomalous couplings, more stats on Higgs BRs,...

500 GeV

HWW couplings -> total width -> absolute couplings Higgs self-coupling, top Yukawa coupling

1 TeV

as motivated by physics

ILC Higgs Factory Roadmap

250 GeV mass, spin CP nature, absolute measurement of HZZ, BRs Higgs \rightarrow qq, ll, VV

350 GeV

top threshold: mass, width, anomalous couplings, more stats on Higgs BRs,...

500 GeV HWW couplings -> total width -> absolute couplings Higgs self-coupling, top Yukawa coupling

1 TeV

as motivated by physics

- see presentations in this session

ILC Higgs Factory Roadmap

250 GeV

mass, spin, CP nature, absolute measurement of HZZ, BRs Higgs \rightarrow qq, ll, VV

350 GeV

top threshold: mass, width, anomalous couplings, more stats on Higgs BRs,...

500 GeV

HWW couplings -> total width -> absolute couplings Higgs self-coupling, top Yukawa coupling

1 TeV

as motivated by physics

Higgs Mass Measurement

 $M_X^2 = (p_{CM} - (p_{\mu^+} + p_{\mu^-}))^2$

recoil mass independent of Higgs decays

 $250 \, {\rm fb}^{-1}$ @ $250 \, {\rm GeV}$ $\Delta \sigma_{\rm H} / \sigma_{\rm H} = 2.5 \, \%$ $\Delta m_{\rm H} = 30 \, {\rm MeV}$

Determining the Higgs Width (model independent)

to extract couplings from BRs we need the total width It to measure total width we need at least one partial width and corresponding BR

Higgs Couplings

precision reach on effective Higgs couplings from SMEFT global fit

ultimate precision achieved in global fit (model-independent in ZH, κ -framework, EFT) I% or better reachable by ILC (as well as other Higgs factories)

Higgs Self-coupling

direct probe of the Higgs potential

 high energy (double Higgs) production is the most sensitive to deviation from the Higgs self-coupling
 $^{(!)}$ polarization almost doubles $HH\nu\nu$ rate $^{\oplus}$ higher center of mass energies offer particular sensitivity to BSM values of λ

Higgs Self-coupling

direct probe of the Higgs potential

 $^{(m)}$ polarization almost doubles $HH\nu\nu$ rate $^{\oplus}$ higher center of mass energies offer particular sensitivity to BSM values of λ

22

for more details see next presentation

Higgs Top-coupling

[Liu, Wang, Zhang, arXiv:1612.09284]

Higgs Measurements Higgs ILC

Summary

ILC promising and mature Higgs factory proposal # features: clean environment, flexible polarization, upgradable in energy In the precision Higgs physics potential

UNIDADE DE PESQUISA DO MCTI

Additional Information

Higgs production @ e+e-

Measuring the Normalization of the Higgs Couplings

measure σ instead of $\sigma \times BR$

- > well defined initial state at e+e-
- > tag Z only and calculate recoil mass
- > decay independent Higgs tag
- > absolute cross-section of $e^+e^- \rightarrow ZH$

recoil technique unique at e⁺e⁻ colliders

Yukawa Coupling to Second Genration Quarks

[Ono, et. al, Euro. Phys. J. C73, 2343; F.Mueller, PhD thesis (DESY); M.Basso, 2203.07535]

> e+e- offers low QCD backgroung > excellent flavor tagging performance for b- and c-quarks > s-quark tagging bing pursued

Higgs Self-coupling

> complementarity between ZHH and $\nu\nu HH$ due to different interference > $\lambda_{\rm HHH}$: large deviation possible in BSM > if $\lambda_{\text{HHH}}/\lambda_{\text{SM}} = 2$, λ_{HHH} measure to 13% using ZHH at 500 GeV e+e-

Grojean, et al., PRD71, 036001; Kanemura, et al., 1508.03245; Kaori, Senaha, PHLTA, B747, 152; Perelstein, et al., JHEP 1407, 108

