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Background

* Precise measurements instrumentation and
reconstruction software are essential for the ILC
programme.

 Various frameworks have been developed for
jet flavour identification.

* LCFIPlus (published 2013)!1 was successful in
vertex finding, jet clustering and flavour tagging.
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* Reached a reasonable performance of:
" b-tag: 80% eff., 10% c / 1% uds acceptance; T 4
= c-tag: 50% eff., 10% b / 2% uds acceptance. 02 04 06 08 0 02 04 06 08
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Transformer
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* Input is converted by the Encoder into a

sequence of hidden states that is consisted r r
of Token Embeds and Positional Embeds. - [[ rrr ~ rrr
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* This hidden state is then processed through “‘ //I I U | I S

layers of Self-Attention and Feed-Forward l
neural networks.
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* The Self-Attention mechanism calculates the
relative importance of each token relative to

all the other tokens in the input sequence 6P
(Outperforms traditional RNN and CNN). it

* The Decoder then outputs one token at a p—
time, and this token is then added to the —

input to generate the next context iteratively.
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(b) Particle Attention Block
Note: MHA — MultiHeadAttention
P-MHA — Augmented version of MHA by Particle Transformer that
involves Interactions Embeddings instead of Positional Embeddings



Particle Transformer (ParT)

A new Transformer-based architecture for Jet
tagging, published in 20222, outgoing parices

* |t analyses the readings collected after collision
events to reconstruct jets. (lllustration of CERN
LHC p-p collisions)

* Surpasses the performance of previous
architectures by a large margin. Values below
are rejection ratio (inverse of acceptance ratio).
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Application of ParT to ILC data
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* Jet tagging performance is greatly
improved by ParT immediately:
" b-tag: 80% eff.,, 1.29% c / 0.247% uds
acceptance;

= c-tag: 50% eff.,, 1.02% b / 0.428% uds
acceptance.

Mis-id. fraction to b jets &
Mis-id. fraction to c jets
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* The performance iS improved by 4'05 , c Simulation - Unsorted Sample - 20 Epochs
— 9.80 times compared to LCFIPlus
with the same set of data.
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e Can this performance to be further
improved?
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Training parameters - epochs

20-epoch training takes 3 hours

200-epoch training takes 30 hours

No significant improvement in tagging
efficiency at 0.6 or 0.8 efficiency

Difference towards 0.4 efficiency
might due to random fluctuation
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ILC Simulation - Unsorted Sample - 20 Epochs
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ILC Simulation - Unsorted Sample - 200 Epochs
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ILC Simulation - Unsorted Sample - 20 Epochs

Training parameters - epochs

= ROC AUC score
- \falidation Metric

e Both ROC AUC score and Validation | ——- Average Accuracy

— Average Loss

Metric reaches a maximum around 20
epochs

* The Average Accuracy and Average
Loss still withess an improvement’ but . ILC Simulation - Unsorted Sample - 200 Epochs
not significant in the analysis result —

overtraining after 20 epochs

—— ROC AUC score
— \/alidation Metric
--- Average Accuracy
- Average Loss

* Hence 20 epochs of training is
selected to be the standard for future
training




Training parameters — Particle ID

e With Particle ID:

= b-tag: 80% eff., 1.32% c / 0.237% uds acceptance;
= c-tag: 50% eff.,, 1.06% b / 0.429% uds acceptance.

e Without Particle ID:

= b-tag: 80% eff., 1.57% c / 0.272% uds acceptance;
= c-tag: 50% eff., 1.24% b / 0.507% uds acceptance.

 Particle ID improves tagging performance
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ILC - efrac - Sorted Sample - 20 Epochs
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ILC - efrac - no particle id - 20 Epochs
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ILC - efrac - no particle id - 20 Epochs
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Training parameters — Jet Distance Values and Track Errors

* With Jet Distance Values and Track Errors :
= b-tag: 80% eff., 0.623% c / 0.174% uds acceptance;
" c-tag: 50% eff., 1.14% b / 0.372% uds acceptance.

ilc_nngq_newval_fixed_20_epochs , ilc_nngg_newval_fixed_20_epochs
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e Without Jet Distance Values and Track Errors :
" b-tag: 80% eff., 0.794% c / 0.187% uds acceptance;
= c-tag: 50% eff., 1.28% b / 0.380% uds acceptance.
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* Jet Distance Values and Track Errors
i m p rove S ta ggi n g p e rfo r m a n Ce of ilc_nngg_newval_removed_particle_id_jet_dist_track_errors
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Training parameters — Track Errors

. W it h Tra C k E r ro rS : . FCC_removed_particle_id_jet_dist

" b-tag: 80% eff., 0.747% c / 0.145% uds acceptance;
= c-tag: 50% eff., 0.797% b / 0.131% uds acceptance.

e Without Track Errors:

= b-tag: 80% eff., 0.773% c / 0.146% uds acceptance;
= c-tag: 50% eff., 0.799% b / 0.130% uds acceptance.
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* Track Errors does not affect tagging
performance significantly.

b tagging c tagging

Jet Misidentification Probability
Jet Misidentification Probability

0.2 0.4 0.6 0 . .2 0.4 0.6 0.8
Jet Tagging Efficiency Jet Tagging Efficiency




Training parameters — More to be confirmed
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