Application of Particle Transformer in Quark Flavor Tagging

Presenter: Lai Gui Date: 2023-08-01

Background

- Precise measurements instrumentation and reconstruction software are essential for the ILC programme.
- Various frameworks have been developed for jet flavour identification.
- LCFIPlus (published 2013)^[1] was successful in vertex finding, jet clustering and flavour tagging.
- Reached a reasonable performance of:
 - b-tag: 80% eff., 10% c / 1% uds acceptance;
 - c-tag: 50% eff., 10% b / 2% uds acceptance.

Transformer

- Input is converted by the <u>Encoder</u> into a sequence of <u>hidden states</u> that is consisted of <u>Token Embeds</u> and <u>Positional Embeds</u>.
- This <u>hidden state</u> is then processed through layers of <u>Self-Attention</u> and <u>Feed-Forward</u> neural networks.
- The <u>Self-Attention</u> mechanism calculates the relative importance of each token relative to all the other tokens in the input sequence (Outperforms traditional RNN and CNN).
- The <u>Decoder</u> then outputs one token at a time, and this token is then added to the input to generate the next context iteratively.

Comparison between regular Transformer and Particle Transformer

Note: MHA – MultiHeadAttention

P-MHA – Augmented version of MHA by Particle Transformer that

involves Interactions Embeddings instead of Positional Embeddings

Particle Transformer (ParT)

- A new Transformer-based architecture for Jet tagging, published in 2022^[2].
- It analyses the readings collected after collision events to reconstruct jets. (Illustration of CERN LHC p-p collisions)
- Surpasses the performance of previous architectures by a large margin. Values below are rejection ratio (inverse of acceptance ratio).

	All classes		$H \to b \bar{b}$	$H \to c \bar c$	$H \to gg$	$H \to 4q$	$H \rightarrow \ell \nu q q'$	$t \rightarrow bqq'$	$t\to b\ell\nu$	$W \to q q'$	$Z \to q \bar{q}$
	Accuracy	AUC	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{99%}	$\operatorname{Rej}_{50\%}$	Rej _{99.5%}	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

Application of ParT to ILC data

- Jet tagging performance is greatly improved by ParT immediately:
 - b-tag: 80% eff., 1.29% c / 0.247% uds acceptance;
 - c-tag: 50% eff., 1.02% b / 0.428% uds acceptance.
- Can this performance to be further improved?

Training parameters - epochs

- 20-epoch training takes 3 hours
- 200-epoch training takes 30 hours
- No significant improvement in tagging efficiency at 0.6 or 0.8 efficiency
- Difference towards 0.4 efficiency might due to random fluctuation

Training parameters - epochs

- Both ROC AUC score and Validation Metric reaches a maximum around 20 epochs
- The Average Accuracy and Average Loss still witness an improvement, but not significant in the analysis result – overtraining after 20 epochs
- Hence 20 epochs of training is selected to be the standard for future training

Training parameters – Particle ID

- With Particle ID:
 - b-tag: 80% eff., 1.32% c / 0.237% uds acceptance;
 - c-tag: 50% eff., 1.06% b / 0.429% uds acceptance.
- Without Particle ID:
 - b-tag: 80% eff., 1.57% c / 0.272% uds acceptance;
 - c-tag: 50% eff., 1.24% b / 0.507% uds acceptance.

Particle ID improves tagging performance ullet

0.8

1.0

1.0

Training parameters – Jet Distance Values and Track Errors

- With Jet Distance Values and Track Errors :
 - b-tag: 80% eff., 0.623% c / 0.174% uds acceptance;
 - c-tag: 50% eff., 1.14% b / 0.372% uds acceptance.
- Without Jet Distance Values and Track Errors :
 - b-tag: 80% eff., 0.794% c / 0.187% uds acceptance;
 - c-tag: 50% eff., 1.28% b / 0.380% uds acceptance.
- Jet Misidentification Probability 10^{-2} 10- 10^{-4} 0.0 0.2 0.4Jet Tagging Efficiency

 10^{-1}

b vs c

b vs d

b tagging

• Jet Distance Values and Track Errors improves tagging performance

Training parameters – Track Errors

- With Track Errors:
 - b-tag: 80% eff., 0.747% c / 0.145% uds acceptance;
 - c-tag: 50% eff., 0.797% b / 0.131% uds acceptance.
- Without Track Errors:
 - b-tag: 80% eff., 0.773% c / 0.146% uds acceptance;
 - c-tag: 50% eff., 0.799% b / 0.130% uds acceptance.

1.0

Training parameters – More to be confirmed

Reference List

[1] https://doi.org/10.1016/j.nima.2015.11.054[2] https://arxiv.org/abs/2202.03772