Snowmass ILC paper review: drawing overall picture

- based on Chapter 13 & 14

preliminary!

Junping Tian (U. Tokyo)

4th ILC-Japan General Physics Meeting, Sept. 4, 2023 @ U.Tokyo

outline

13 Big Physics Questions Addressed by ILC	261
13.1 Can the Standard Model be exact to very high energies?	261
13.2 Why is there more matter than antimatter?	264
13.3 What is the dark matter of the universe?	265
13.4 What is the energy scale of new physics?	267
13.5 Why is electroweak symmetry broken?	270
14 ILC and Models of Physics Beyond the Standard Model	273
14.1 ILC and dark matter	273
14.2 ILC and supersymmetry	275
14.2.1 Direct SUSY particle production	275
14.2.2 Observation of SUSY effects on the Higgs boson	278
14.3 ILC and composite Higgs fields	278
14.4 ILC and flavor	280
14.5 Mass Reach of Precision Higgs Measurements	. 281
14.6 The Higgs Inverse Problem	. 283

1. Can the SM be exact to very high energies?

• from the angle of EW vacuum stability: $\lambda < 0$ at high scales?

2. Why is there more matter than anti-matter?

- Sakharov conditions: B, C, CP violations; out of thermal equilibrium
- SM: 2nd-order phase transition; CP-violating CKM angles not enough
- ILC role focused on Electroweak Baryogenesis models

2. Why is there more matter than anti-matter?

red: very strongly first-order phase transition (GW @ eLISA)

2. Why is there more matter than anti-matter?

• Leptogenesis models are also possible; ILC plays a role as well

Figure 3: Origin of matter-antimatter asymmetry.

[S. Asai et al, ILC250 scientific case by JAHEP; arXiv: 1710.08639]

- Viable enormous range of masses by 10s of orders
- ILC role focused thermal WIMP, GeV-TeV
- Guided by observed relic density, annihilation $\sigma{\sim}1\text{pb}$: WIMP masses and couplings fall into three categories

ILC: Higgsino, stau, loop hole-free search ILC: "Portal" by photon, Higgs, neutrinos, Fixed Target exp.

ILC: long-term future

Scan of MSSM parameters: consistent with constraints from $(g-2)_{\mu}$

color: value of the LSP dark matter density full coverage by ~ ILC (1000)

Pure Higgsino

covered by ~ ILC multi-TeV

Dark photon portal

covered by ~ ILC fixed target experiment

4. What is the energy scale of new physics?

- Deviation from SM will tell us the new physics scale
- EFT approach by Wilson coefficient: for c~O(1), 1% level deviation will indicate O(1TeV) new mass scale

Figure of merit: Higgs "size" vs Compton wavelength. Beginning to probe the size of the Higgs at the LHC, but not yet to π -like compositeness

More precisely: bound "size" corrections, e.g.

$$\mathcal{O}_{H}=rac{1}{2\Lambda^{2}}\left(\partial_{\mu}|H|^{2}
ight)^{2}$$

Now

(for example)

[N. Craig, LCWS 2023]

4. What is the energy scale of new physics?

Concrete model approach

ILC can discover new physics scale well above multi-TeV

5. Why is electroweak symmetry breaking?

- Why µ2 < 0?
- Underling physics responsible for generating it ~ TeV
- ILC: deviations by MSSM, Composite, Extra Dimensions

$$M_H^2 = M_{\text{tree}}^2 + \begin{pmatrix} H \\ \Box \\ H \\ H \end{pmatrix} + \begin{pmatrix} t \\ \Box \\ H \end{pmatrix} + \begin{pmatrix} W \\ \Box \\ H \\ H \end{pmatrix} + \begin{pmatrix} W \\ Z \\ H \\ H \end{pmatrix} + \begin{pmatrix} W \\ H \\ H \end{pmatrix} + \begin{pmatrix} W \\ H \\ H \end{pmatrix} + \begin{pmatrix} W \\ H \\ H \\ H \end{pmatrix} + \begin{pmatrix} W \\ H \end{pmatrix} + \begin{pmatrix} W \\ H \\ H \end{pmatrix} + \begin{pmatrix} W$$

6. Concrete Models: ILC & SUSY

Direct Search Indirect by precision Higgs coup.

7. Higgs Inverse Problem

8. ILC and flavor

- Origin of fermion masses: ILC can measure Yukawa couplings to top, b, τ , c, μ , (s)
- Test of CMK unitarity: ILC W hadronic branching gives a tight constraint on first two rows of CKM elements

