Charge ID

- I use charge ID results to calculate zprime mass limit in bb and cc.
- I use this as a reference.

ILD-PHYS-PUB-2023-001, June 2023,

"Experimental methods and prospects on the measurement of electroweak b and c-quark observables at the ILC operating at 250 GeV"

Efficiency $\varepsilon_{Cat.X}$ distribution

- For *cc*
 - Cat.1 ->K-method
 - Cat.2 ->Vtx-method
 - Cat.3 ->Method in which one of the jets had no measurement of the charge using Kmethod but had it with Vtx-method
- For $b\overline{b}$
 - Cat.1 ->Vtx-method
 - Cat.2 ->K-method
 - Cat.3->Method in which one of the jets had no measurement of the charge using Vtx-method but had it with K-method

Figure 18: Distribution of the different selection efficiencies for $c\overline{c}$ (left) and $b\overline{b}$ (right) for the A_{FB} measurement, as described in Eq. 22. For the $c\overline{c}$ ($b\overline{b}$) case, the *Cat*.1 corresponds to only the *K*-method (*Vtx*-method) applied and *Cat*.2 to only the *Vtx*-method (*K*-method) applied.

Total efficiency (gray line) is used to find the zprime mass limit.

Calculate efficiency (costheta-dependent)

- Efficiency(costheta-dependent) for each bin of bb,cc events
- For bb event,

 $efficiency_angle = \frac{\# of (true bb) w/eventcut}{\# of (true bb) w/o eventcut} \times \frac{\# of predicted bb}{\# of predicted total} \times Charge ID efficiency$ The below case is used as the 1bin case. $efficiency_1bin = \frac{\# of (true bb) w/eventcut}{\# of (true bb) w/o eventcut} \times \frac{\# of predicted bb}{\# of predicted total} \times (1 - Charge ID efficiency)$

- Since the angle-dependent range is from -0.9 to 0.9, but the charge ID efficiency is from 0 to 0.9.
- So, I calculate the angle-dependent efficiency in this range and use the same value for the -0.9 to 0 range.
- I calculate the same way for number of background events.

Mass limit for bb

1bin & angle (with Charge ID)

1bin only (No Charge ID)

"model name" mass limit for angle + 1bin and mass limit in each case

Mass limit for cc

1bin & angle (with Charge ID)

1bin only (No Charge ID)

Ecm =500 [GeV] SSM: M(5) = 3.64362 [TeV] M(2) = 5.09955 [TeV] angle: M(5) = 3.35435 [TeV] M(2) = 4.69629 [TeV] 1bin: M(5) = 3.28304 [TeV] M(2) = 5.32016 [TeV] Ecm =500 [GeV] ALR: M(5) = 3.2932 [TeV] M(2) = 4.61607 [TeV] angle: M(5) = 3.10067 [TeV] M(2) = 4.35332 [TeV] 1bin: M(5) = 2.78294 [TeV] M(2) = 4.50451 [TeV]	Ecm =500 [GeV] SSM: M(5) = 4.01106 [TeV] M(2) = 6.51063 [TeV] Ecm =500 [GeV] ALR: M(5) = 3.45473 [TeV] M(2) = 5.60182 [TeV] Ecm =500 [GeV] chi: M(5) = 1.9736 [TeV] M(2) = 3.15851 [TeV]
Ecm =500 [GeV] chi: M(5) = 1.96116 [TeV] M(2) = 2.70934 [TeV] angle: M(5) = 1.86537 [TeV] M(2) = 2.57585 [TeV] lbin: M(5) = 1.63275 [TeV] M(2) = 2.5902 [TeV]	Ecm =500 [GeV] psi: M(5) = 1.8201 [TeV] M(2) = 2.88201 [TeV] Ecm =500 [GeV] eta: M(5) = 1.93457 [TeV] M(2) = 3.06962 [TeV]
Ecm =500 [GeV] osi: M(5) = 1.75443 [TeV] M(2) = 2.40728 [TeV] angle: M(5) = 1.65998 [TeV] M(2) = 2.27744 [TeV] 1bin: M(5) = 1.50334 [TeV] M(2) = 2.35333 [TeV]	
Ecm =500 [GeV] eta: M(5) = 1.82679 [TeV] M(2) = 2.51223 [TeV] angle: M(5) = 1.72028 [TeV] M(2) = 2.36653 [TeV] 1bin: M(5) = 1.58671 [TeV] M(2) = 2.4868 [TeV]	

mass limit for angle + 1bin and mass limit in each case

	χ^2	for	bb	
======= Ecm =500 SSM: M(5 angle: M 1bin: M(======= [GeV]) = 4.3140 (5) = 2.69 5) = 5.039	9 [TeV] M(2 937 [TeV] M 88 [TeV] M	======================================	== [eV] [TeV] [TeV]
======= Ecm =500 ALR: M(5 angle: M 1bin: M(======= [GeV]) = 1.7820: (5) = 1.33! 5) = 1.992	============= 8 [TeV] M(2 54 [TeV] M(79 [TeV] M(======================================	== [eV] [TeV] [TeV]
======= Ecm =500 chi: M(5 angle: M 1bin: M(======= [GeV]) = 2.8467; (5) = 1.86; 5) = 3.297(======= 2 [TeV] M(2 292 [TeV] M 68 [TeV] M(======================================	== [eV] [TeV] [TeV]
======= Ecm =500 psi: M(5 angle: M 1bin: M(======= [GeV]) = 1.8081; (5) = 1.23 5) = 2.080	======== 2 [TeV] M(2 42 [TeV] M(1 [TeV] M(2	======================================	== [eV] [TeV] [eV]
====== Ecm =500 eta: M(5 angle: M	======== [GeV]) = 1.58703 (5) = 1.153	======= 3 [TeV] M(2 382 [TeV] M) = 2.17248 [⁻ (2) = 1.54333	== [eV] [TeV]

lbin: M(5) = 1.79082 [TeV] M(2) = 2.83971 [TeV]

1bin & angle (with Charge ID)

chi2_angle = 42.9909

chi2 = 73.8994 ndf = 40

SSM: M(5) = 5 [TeV] M(2) = 5 [TeV]

ALR: M(5) = 5 [TeV] M(2) = 5 [TeV]

chi: M(5) = 5 [TeV] M(2) = 5 [TeV]

psi: M(5) = 5 [TeV] M(2) = 5 [TeV]

eta: M(5) = 5 [TeV] M(2) = 5 [TeV]

chi2_1bin = 30.9084

chi2_angle = 38.216

chi2_1bin = 2.63567

chi2 = 40.8517 ndf = 40

chi2_angle = 38.9348

chi2 = 46.0336 ndf = 40

chi2_angle = 38.1609

chi2 = 40.9277 ndf = 40

chi2_angle = 38.1133

chi2 = 40.5084 ndf = 40

chi2_1bin = 2.39511

chi2_1bin = 2.76687

chi2_1bin = 7.09886

Ecm =500 [GeV]

1bin only (No Charge ID)

chi2_angle = No Use chi2_1bin = 31.3686 chi2 = 31.3686 ndf = 2 Ecm =500 [GeV] SSM: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 2.63276 chi2 = 2.63276 ndf = 2 Ecm =500 [GeV] ALR: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 7.18849 chi2 = 7.18849 ndf = 2 Ecm =500 [GeV] chi: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 2.76707 chi2 = 2.76707 ndf = 2 Ecm =500 [GeV] psi: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 2.40372 chi2 = 2.40372 ndf = 2 Ecm =500 [GeV] eta: M(5) = 5 [TeV] M(2) = 5 [TeV]

 χ^2 for cc

Each chi square value is "calculated chi2" + "ndf". 1bin & angle (with Charge ID)

chi2_angle = 49.9328

chi2_angle = 46.7909

chi2_1bin = 4.61892

chi2 = 51.4098 ndf = 40

chi2_angle = 39.0199

 $chi2_{1bin} = 2.27406$

chi2_angle = 38.607

chi2_1bin = 2.17943

chi2_angle = 38.7112

chi2_1bin = 2.22636

chi2 = 40.9376 ndf = 40

chi2 = 40.7865 ndf = 40

chi2 = 41.2939 ndf = 40

SSM: M(5) = 5 [TeV] M(2) = 5 [TeV]

ALR: M(5) = 5 [TeV] M(2) = 5 [TeV]

chi: M(5) = 5 [TeV] M(2) = 5 [TeV]

psi: M(5) = 5 [TeV] M(2) = 5 [TeV]

ta: M(5) = 5 [TeV] M(2) = 5 [TeV]

_chi2_1bin = 7.11491 chi2 = 57.0477 ndf = 40

Ecm =500 [GeV]

1bin only (No Charge ID)

chi2_angle = No Use chi2_1bin = 13.5185 chi2 = 13.5185 ndf = 2 Ecm =500 [GeV] SSM: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 8.29543 chi2 = 8.29543 ndf = 2 Ecm =500 [GeV] ALR: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 2.61767 chi2 = 2.61767 ndf = 2 Ecm =500 [GeV] chi: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 2.41935 chi2 = 2.41935 ndf = 2 Ecm =500 [GeV] psi: M(5) = 5 [TeV] M(2) = 5 [TeV] chi2_angle = No Use chi2_1bin = 2.54317 chi2 = 2.54317 ndf = 2 Ecm =500 [GeV] eta: M(5) = 5 [TeV] M(2) = 5 [TeV]

Back up

quark flavor tagging

- To evaluate the new physics search, we make a cos theta distribution for each signal quark.
- To do this, I first conduct flavor tagging on the signals and separate them into b, c, and others.

athara
others
34,311
10,348
5,104
- 4

Flavor tagging is performed on the two jets of reconstituted particles and events are used if the respective flavors match, events that do not match are others.

• Number of background event

- 2f BG + 4f BG + 2f signal(Not signal flavor)
- BG for bb event
- BG=signal(true flavor qq,cc & predicted bb)+2fBG(predicted bb)+4fBG(predicted bb)
- Number of signal event
- SIG=Signal(predicted bbの中のtrue flavorがbb)

5-sigma mass limit (TeV)

Without Charge ID

Z' model	l	b	С	q	
SSM	4.7	5.1	4.1	6.3	
ALR	6.4	2.0	3.5	2.8	
Chi	4.6	3.3	2.0	3.2	
Psi	2.4	2.1	1.8	1.6	
Eta	2.7	1.8	2.0	1.9	

Upper limit for the mass of Z' that can be detected in $e^+e^- \rightarrow f\bar{f}$ measurements of ILCs with CMS energy of 500 GeV with a misalignment of more than 5 σ .

If the upper limit of mass is lowered by adding a channel, the value of the upper limit before the addition is used.

Z' model	<i>b</i> + <i>c</i>	b + c (original)	b + c + q	b+c+q (original)	l + b + c	l + b + c (original)	l + b + c + q	$\begin{vmatrix} l+b+c+\\q(original) \end{vmatrix}$
SSM	5.3	5.3	6.7	6.7	5.3	5.3	6.5	6.0
ALR	3.5	3.4	3.6	3.6	6.4	6.4	6.4	6.4
Chi	3.3	3.3	3.7	3.7	4.7	4.7	4.8	4.8
Psi	2.2	2.2	2.3	2.3	2.6	2.6	2.6	2.6
Eta	2.1	2.1	2.3	2.3	2.8	2.8	2.8	2.8

2-sigma mass limit (TeV)

Without Charge ID

Z' model	l	b	С	q	
SSM	6.6	8.9	7.0	10.9	
ALR	8.8	3.4	6.0	4.8	
Chi	6.4	5.7	3.4	5.4	
Psi	3.3	3.6	3.1	2.6	
Eta	3.7	3.1	3.3	3.2	

Upper limit for the mass of Z' that can be detected in $e^+e^- \rightarrow f\bar{f}$ measurements of ILCs with CMS energy of 500 GeV with a misalignment of more than 2σ .

If the upper limit of mass is lowered by adding a channel, the value of the upper limit before the addition is used.

Z' model	<i>b</i> + <i>c</i>	b + c (original)	b + c + q	b + c + q (original)	l + b + c	l + b + c (original)	l + b + c + q	$\begin{vmatrix} l+b+c+\\q(original) \end{vmatrix}$
SSM	8.9	8.2	10.9	10.1	8.9	7.3	10.9	8.3
ALR	6.0	5.3	6.0	5.5	8.9	8.9	8.8	8.8
Chi	5.7	5.0	5.7	5.5	6.5	6.5	6.6	6.6
Psi	3.6	3.4	3.6	3.4	3.6	3.5	3.6	3.5
Eta	3.3	3.3	3.4	3.4	3.8	3.8	3.9	3.9