LCWS2024 International Workshop on Future Linear Colliders

July 8, 2024

Physics case for e⁺e⁻ Higgs/Electroweak factories: Precision physics

University of Granada

Why do we need more precision?

Jorge de Blas - U. of Granada

• The bigs questions:

- Solutions to most of these questions involve BSM physics "talking" to any of the sectors of the SM, in particular the Higgs \Rightarrow Virtual effects in SM observables
- Pushing the precision of SM measurements is a way of learning about new physics (indirectly)!

Looking back at the LEP/SLC legacy: Electroweak precision era

The Higgs (and Top) before they were discovered...

 $EWPO + LEP2: m_H < 171 \text{ GeV} 95\% \text{ C.L.}$

- Looking back at the LEP/SLC legacy: Electroweak precision era
 - ✓ By measuring precisely the properties of the W/Z bosons we learned about the Higgs (and Top) before they were discovered...
 - \checkmark ...and thus how to optimize the direct search of the Higgs boson

- Looking back at the LEP/SLC legacy: Electroweak precision era
 - ✓ By measuring precisely the properties of the W/Z bosons we learned about the Higgs (and Top) before they were discovered...
 - \checkmark ...and thus how to optimize the direct search of the Higgs boson

• The LEP/SLC legacy: After the Higgs discovery

- ✓ The same precision turned into valuable source of information about new physics (strong constraints on what it could be)
- ✓ Important for BSM phenomenology and to guide direct LHC searches
- ✓ Especially when we do not know what we are looking for!

All this with \sim permille precision on W/Z physics

7

• The HLLHC will open the door to percent precision Higgs physics...

• ... but percent precision gives only limited access to TeV scale new physics

• The HLLHC will open the door to percent precision Higgs physics...

New Physics solving naturalness problem interacts with Higgs

$$M_h^2 = \cdots \otimes M \cdots + \cdots \otimes N_{\text{New}} \sim 0$$

How would our knowledge change with measurements at

 Δ

future *e*⁺*e*⁻ EW/Higgs factories?

• ... but percent precision gives only limited access to TeV scale new physics

• Future collider projects: The Intensity/Energy frontier

Accuracy/Intensity Frontier

Indirect sensitivity to new physics

Direct Production

of new particles

Physics case for Higgs and Electroweak precision July 8, 2024

• Future collider projects: The Intensity/Energy frontier

Indirect sensitivity to new physics

Direct Production

of new particles

• Future collider projects: The Intensity/Energy frontier

Accuracy/Intensity Frontier

Indirect sensitivity to new physics

Direct Production

of new particles

Physics case for Higgs and Electroweak precision July 8, 2024

The case for Precision Higgs physics at future e⁺e⁻ colliders

Jorge de Blas - U. of Granada

Precision Higgs physics at future e^+e^- colliders:

What do O(10⁶) Higgses <u>at e^+e^- </u> bring to the table?

ILC250	0.9ab ⁻	(-0.8, +0.3)	0.9ab ⁻	(+0.8, -0.3)	FCCee24	$0 \; 5 a b^{-1}$
Prod.	ZH	ννΗ	ZH	ννΗ	ZH	$\nu\nu H$
σ	1.07	-	1.07	-	0.5(0.537)	-
$\sigma imes BR_{bb}$	0.714	4.27	0.714	17.4	0.3(0.380)	3.1(2.78)
$\sigma \times BR_{cc}$	4.38	-	4.38	-	2.2(2.08)	-
$\sigma \times BR_{gg}$	3.69	-	3.69	-	1.9(1.75)	-
$\sigma \times BR_{ZZ}$	9.49	-	9.49	-	4.4(4.49)	-
$\sigma \times BR_{WW}$	2.43	-	2.43	-	1.2(1.16)	-
$\sigma \times BR_{\tau\tau}$	1.7	-	1.7	-	0.9(0.822)	-
$\sigma \times BR_{\gamma\gamma}$	17.9	-	17.9	-	9(8.47)	-
$\sigma \times BR_{\gamma Z}$	63	-	59	-	(17^{*})	-
$\sigma \times BR_{\mu\mu}$	37.9	-	37.9	-	19(17.9)	-
$\sigma \times BR_{inv.}$	0.336	-	0.277	_	0.3(0.226)	-

O(10⁶) (ZH) Higgses **Statistics:** O(10⁵)(WWH) Higgses

Statistical uncertainties below 1%: **Experimental systematics not expected to** be a limiting factor for Higgs measurements

125.3 57.2 % 6.27 % 0.0218 % 2.89 % 0.0244 %
s beson h is produced mainly via product 125.6 56.7 % 6.22 % 0.0216 % 2.86 % 0.0242 %
$C = 7 \Sigma = 7 \Sigma I (11g. 1.5 Leve) and the the 120.5 55.3\% 0.0-\% 0.0211\% 2.79\% 0.0230\%$
+ $h\nu\nu$ (Fig. 1.3. (Middle)) and ctree to standard Wade values of brandward to be of brandward water at the bigs boson for each value of Precision Figs Division at the bigs boson for each value of the bigs boson is also listed for each
an s-channel process so that it is maximal just above the threshold of the
oson fusion is a <i>t</i> -channel process which m_h (GeV) Higgses at e^+e^- bring to the table?
125.0 8.57 % 0.228 % 0.154 % 21.5 % 2.64 % 4.07 125.3 854 % 0.228 % 0.156 % 21.9 % 2.72 % 4.11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
mortant process of this type is Higgs pr 125.9 8.49 % 0.228 % 0.162 % 22.9 % 2.87 % 4.20
diagram is shown in Fig. 1.3 (-Risinal). The corresponding production closs $ZH^{3.02}$ ($\sigma_{ZH}^{4.0}$ $g_{HZZ}^{2} < 1^{6.5}$)
wn in 300 s 1.4 (Left) and (Right Brokground function of the collision energy by
are listed for $m_h = 125.0$, 125.6, 125.9, 126.2 and 126.5 GeV [47]. In Table 1.2 the predicted
on (position) beam polarization lies bethe total decay width of the Higgs boson are also listed. It is quite interesting that with
Il start with the e ⁺ eft concenterers mass 250°GeV, a large number of decay modes have similar sizes and are accessible to
e Higgs stranding process is dominant and the contributions of the fusion maizes all couplings the
own in Elg. 1.4 (Loft) Ac-thested determining the second determining
110 120 130 boson coupling are determined respectively by measuring the production cross sections of top pair
$\mathbf{Recoil} = \mathbf{Recoil} = Re$
e ⁺ 124 Uirre reduction at the U.C. Together with Bate measurements
H H H H H H H H H H
At the LC, the SM Higgs boson h is produced mainly via production mechanisms such as the
Higgsstrahlung pocess $x^+ Z^* A Zh$ (Fig. 1.3 Left) and the the weak boson fusion processes
$\mathcal{L} \xrightarrow{e^+e^-} \rightarrow W^{+*}W^{-*}\nu\nu \rightarrow h\nu\nu \text{ (Fig. 1.3 (Middler) and } e^+e^- \rightarrow Z^*Z^*e^+e^- \rightarrow he^+e^ \text{ I he}$
Higgsstrahlung process is an <i>s</i> -channel process so that it is maximal just above the threshold of the
Z e - process, whereas vector boson fusion is a t-channel process which yields a cross section that grows
bgarithmically with the center-of-mass energy. The Higgs boson is also produced in association with
$(E_+ + E)$ $e^+e^- \rightarrow HZ$ is the Higgs production in association with a top
e) and the top-quark association (Kighichs at the II C are shown in Figs 14 (Left) and (Pight) as function of the colligion on army by
γ = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
Jorge de Blas - 0. of Granada

The II C operation will start with the c^+c^- collicion operation (i) (just above threshold for

• Precision Higgs physics at future e^+e^- colliders:

What do O(10⁶) Higgses <u>at e^+e^- </u> bring to the table?

126 GeV/c²

Higgs

boson

0

0

• Precision Higgs physics at future e^+e^- colliders:

What do O(10⁶) Higgses <u>at e^+e^- </u> bring to the table?

• Precision Higgs physics at future e^+e^- colliders:

include dimension-6 contributions, the SM relation between the ferr **Precision physics** and interactions is a set of its of the set of its of the set of

• Precision Higgs physics at future e^+e^- colliders:

• Precision Higgs physics at future e^+e^- colliders:

Physics case for Higgs and Electroweak precision

• Precision Higgs physics at future e^+e^- colliders:

Higgs self-coupling from single-Higgs processes

• Precision Higgs physics at future e^+e^- colliders:

What do O(10⁶) Higgses <u>at *e*+*e*-</u> bring to the table?

- Higgs portals to SM-neutral new physics sectors: $\Delta \mathcal{L} \sim \left|\phi\right|^2 \mathcal{O}_{
 m NP} o h \mathcal{O}_{
 m NP}$
 - \checkmark Clean environment allows to detect any Higgs decay (many exotic decays) could "escape" untagged at the LHC)

From Higgs coupling fit $BR_{unt} < 1 - 2\%$ @ 95% prob.

95% C.L. upper limit on selected Higgs Exotic Decay BR

Z. Liu, L-T. Wang, H. Zhang, Chin. Phys. C 41, 6 (2017) 063102

• Precision Experiment vs. Theory

	experim	ental acc	uracy	the	eory uncerta	ainty	param.	unc.	
	HL-LHC	ILC250	FCC-ee	current	source	prospect	prospect	source	
$H \rightarrow b\bar{b}$	4.4%	2%	0.8%	0.4%	$lpha_{ m s}^{ m 5}$	0.2%	0.6%	$m_{ m b}$	
${\rm H} \to \tau \tau$	2.9%	2.4%	1.1%	0.3%	α^2	0.1%	neglig	ible	
$H \rightarrow \mu \mu$	8.2%	8%	12%	0.3%	α^2	0.1%	neglig	ible	
$\mathrm{H} \rightarrow \mathrm{gg}$	1.6% (prod.)	3.2%	1.6%	3.2%	$lpha_{ m s}^{ m 4}$	1%	0.5%	$lpha_{ m s}$	
$H \rightarrow \gamma \gamma$	2.6%	2.2%	3.0%	1%	α^2	1%	neglig	ible	
$H \rightarrow \gamma Z$	19%			5%	lpha	1%	0.1%	$M_{ m H}$	
$\mathrm{H} \rightarrow \mathrm{WW}$	2.8%	1.1%	0.4%	0.5%	$lpha_{ m s}^2, lpha_{ m s}lpha, lpha^2$	0.3%	0.1%	$M_{ m H}$	
$\mathrm{H} \rightarrow \mathrm{ZZ}$	2.9%	1.1%	0.3%	0.5%	$lpha_{ m s}^2, lpha_{ m s}lpha, lpha^2$	0.3%	0.1%	$M_{ m H}$	
						A. Freita	s et al., arXi	v: 1906.0537§	9 [hep-ph

- Theory challenges:
 - ✓ Full 2-loop calculation for $e^+e^- \rightarrow ZH$
 - ✓ Partial 2-loop effects for WBF
 - ✓ 4-/5-loop QC calculation in $H \rightarrow bb$, cc

Recent progress:

A. Freitas, Q. Song, PRL 130 (2023) 3, 031801 A. Freitas, Q. Song, K. Xie, PRD 1080 (2023) 5, 053006

Theory expected to be ready and SMTH uncertainties (intrinsic & parametric) to have small impact in BSM interpretation

The case for Precision EW physics at future e⁺e⁻ colliders

Jorge de Blas - U. of Granada

Precision physics at e⁺e⁻ Electroweak factories

Future e⁺e⁻ factories will also help us improve our knowledge of the EW interactions:

 Significantly lower stats at linear colliders but can benefit from use of polarization ⇒ Extra observables wrt unpolarized case. E.g. asymmetries

Ζ

Precision physics at e+e- Electroweak factories

- Future e⁺e⁻ factories will also help us improve our knowledge of the EW interactions:
 - Also very precise measurements of other crucial inputs of the EW fit:

Precision physics at e+e- Electroweak factories

What can we do with future EW measurements?

• Solve old and new "puzzles" in current EWPO

Jorge de Blas - U. of Granada

EPrecision ZLVCKM CVCKM again wiggshi-Maskauge (CKM) mange which, unlass oth panate to the identity matrix. ing ol Future e⁺e⁻ improves LEP/SLD EW 10⁻² precision typically by a factor 10 abibesults will be presented, not in terms Y gaage-invarfant operators, but in te 10to as Effective Higgs and electroweak couplerses, comand thus, independent of the basis one could have 10⁻² rangian. This is done by perfo 10⁻³ rming ents and then from t defined from: δq_{7D}^{bb} uplings. quantities referr ings, com pserval segands thus, independent of the basis one Bald thave gzee 6 Lägnangian. This is done by perfo it interne

Precision physics at e⁺e⁻ Electroweak factories

What can we do with future EW measurements?

• Precision Flavor Physics:

	~15% <i>Z→bb</i>	Huge sample for
5×10 ¹² Z	~3.4% <i>Z</i> →ττ	Flavor measurements

• E.g. B physics:

Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upgr. $(50/fb)$	FCC-ee
$\overline{\mathrm{EW}/H}$ penguins				
$B^0 \to K^*(892)e^+e^-$	~ 2000	~ 150	~ 5000	~ 200000
$\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$	~ 10	_	_	~ 1000
$B_s o \mu^+ \mu^-$	n/a	~ 15	~ 500	~ 800
$B^0 ightarrow \mu^+ \mu^-$	~ 5	_	~ 50	~ 100
$\mathcal{B}(B_s \to \tau^+ \tau^-)$				
Leptonic decays				
$B^+ o \mu^+ \nu$	5%	_	_	3%
$B^+ \to \tau^+ \nu$	7%	_	_	2%
$B_c^+ o au^+ u$	n/a	_	—	5%
				Table from S. Monte

 $b \to d\ell^+ \ell^-$

 $B^0 \to \rho \ell^+ \ell^- \quad B_s \to K^* \ell^+ \ell^-$

Physics case for Higgs and Electroweak precision $J(2)^{5}$ July 8, 2024

Precision physics at e⁺e⁻ Electroweak factories

What can we do with future EW measurements?

• Precision Flavor Physics:

	~15% <i>Z→bb</i>	Huge sample for
$5 \times 10^{12} Z$	~3.4% <i>Z</i> →ττ	Flavor measurements

• E.g. B physics:

Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upgr. $(50/fb)$	FCC-ee
EW/H penguins $B^0 \rightarrow K^*(802)e^+e^-$	2000	. 150	a 5000	~ 20000
$\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$	~ 10	_	_	~ 1000
$B_s \rightarrow \mu^+ \mu^-$	n/a	\sim 15	~ 500	~ 800
$B^0 ightarrow \mu^+ \mu^-$	~ 5	_	~ 50	~ 100
$\mathcal{B}(B_s \to \tau^+ \tau^-)$				
Leptonic decays				
$B^+ \to \mu^+ \nu$	5%	_	_	3%
$B^+ \rightarrow \tau^+ \nu$	7%	_		2%
$B_c^+ \to \tau^+ \nu$	n/a	_	_	5%

Outside the reach of LHCb/Belle II

Table from S. Monteil

 $b \to d\ell^+ \ell^-$

$$B^0 \to \rho \ell^+ \ell^- \quad B_s \to K^* \ell^+ \ell^-$$

Jorge de Blas - U. of Granada

Precision physics at e+e- Electroweak factories

• Precision Experiment vs. Theory

	experim	ental	accuracy	intrinsic	th. unc.	parametr	ric unc.	
	current	ILC	FCC-ee	current	prospect	prospect	source	
$\Delta M_{\rm Z} [{ m MeV}]$	2.1		0.1					
$\Delta \Gamma_{\rm Z} [{ m MeV}]$	2.3	1	0.1	0.4	0.15	0.1	$lpha_{ extsf{s}}$	
$\Delta \sin^2 heta_{ m eff}^\ell [10^{-5}]$	23	1.3	0.6	4.5	1.5	2(1)	$\Delta lpha_{ m had}$	
$\Delta R_{ m b} [10^{-5}]$	66	14	6	11	5	1	$lpha_{ m s}$	
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	1.5	1.3	$lpha_{ m s}$	
	•				A. Freitas e	et al., arXiv:	1906.05379	[hep-ph]

- Theory challenges
 - ✓ EW & QCD-EW 3-loop + leading 4 loop (Y_t enhanced)
- Even accounting for future progress, SM theory uncertainties will have an impact on BSM interpretation of EWPO
- Parametric uncertainties (α_{em}) expected to have a similar affacts $\mu_{\text{Diskalisches Institut}}$

BSM precision at future e⁺e⁻ EW/Higgs factories

Jorge de Blas - U. of Granada

Global precision at e+e- EW/Higgs factories

Physics case for Higgs and Electroweak precision July 8, 2024

Sensitivity to BSM deviations in future projections within the framework of dimension-6 SMEFT

$$\mathcal{L}^{d=6}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i \qquad \qquad \delta(rac{c_i}{\Lambda^2}) o \delta g_x$$

Match c_i to specific models to learn about UV

Jorge de Blas - U. of Granada

Physics case for Higgs and Electroweak precision July 8, 2024

• What can we learn with all this precision about UV physics?

High Energy UV theory/BSM Aatchin Match to UV and reinterpret SMEFT bounds SMEFT **Low Energy 48 multiplets** contributing to ∙d≤6 -SMEFT **@ Tree level**

19 spin 0

Name	S	\mathcal{S}_1	\mathcal{S}_2	arphi	[1]	Ξ_1	Θ_1	Θ_3
Irrep	$(1,1)_{0}$	$(1,1)_1$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	$(1,3)_0$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
Name	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
Irrep	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$		
Name	Ω_1	Ω_2	Ω_4	Υ	Φ			
Irrep	$(6,1)_{\frac{1}{3}}$	$(6,1)_{-\frac{2}{3}}$	$(6,1)_{\frac{4}{3}}$	$(6,3)_{rac{1}{3}}$	$(8,2)_{\frac{1}{2}}$			

13 spin 1/2

Name	N	E	Δ_1	Δ_3	Σ	Σ_1	
Irrep	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-\frac{1}{2}}$	$(1,2)_{-\frac{3}{2}}$	$(1,3)_{0}$	$(1,3)_{-1}$	
Name	U	D	Q_1	Q_5	Q_7	T_1	T_2

17 spin 1

Name	${\mathcal B}$	${\mathcal B}_1$	${\mathcal W}$	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
Irrep	$(1,1)_{0}$	$(1,1)_1$	$(1,3)_{0}$	$(1,3)_1$	$(8,1)_0$	$(8,1)_1$	$(8,3)_0$	$(1,2)_{\frac{1}{2}}$
Name	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	\mathcal{X}	${\mathcal Y}_1$	\mathcal{Y}_5

JB, J.C. Criado, M. Pérez-Victoria, J. Santiago, JHEP 03 (2018) 109

• What can we learn with all this precision about UV physics?

• What can we learn with all this precision about UV physics?

Jorge de Blas - U. of Granada

• What can we learn with all this precision about UV physics?

Jorge de Blas - U. of Granada

Summary

- EW/Higgs physics at future e⁺e⁻ colliders will bring a giant step forward with respect to LEP/SLD/HL-LHC:
 - ✓ Increase precision $x10 \rightarrow$ per-mile level in Higgs couplings (not ratios)
 - ✓ Access to interactions not easy or impossible to access at HL-LHC:
 - E.g. charm Yukawa, strange Yukawa? electron Yukawa?
 - ✓ Higgs width with 1% precision
 - ✓ Great power to testing BSM scenarios indirectly
- Higgs and EW precision are highly complementary: important for interpretation of measurements
- Precision experiments needs precision theory!
- There is a clear physics case for a future program of precision measurements at future e^+e^- colliders. They could give a hint of where NP may be hiding...
- Even if no significant deviation is seen, precision measurements at low-energy EW/Higgs factories will help to optimize/guide measurements/direct searches:
 - ✓ Future hadron colliders
 - ✓ High-energy phase of e^+e^- colliders \Rightarrow Talk by G. R. Weiglein