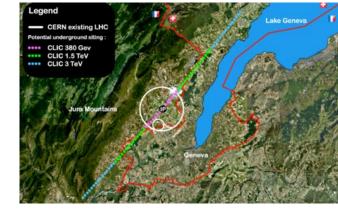
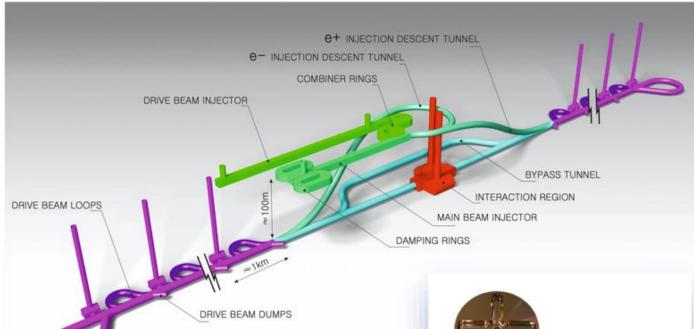


CLIC status

Outline


- CLIC parameter overview
- Recent and ongoing activities*
- Schedules, Costs, Power and Sustainability*
- ESPP planning


*More in the talk by P.Burrows in the afternoon

Steinar Stapnes - CERN

LCWS 2024 Tokyo 8.7

The Compact Linear Collider (CLIC)

Accelerating structure prototype for CLIC: 12 GHz (L~25 cm), 100 MV/m

- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV.
- Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.

Status reports and studies

Two formal submissions to the ESPPU 2018

3-volume CDR 2012

Updated Staging Baseline 2016

4 CERN Yellow Reports 2018

Details about the accelerator, detector R&D, physics studies for Higgs/top and BSM

Available at:

clic.cern/european-strategy

Several LoIs have been submitted on behalf of CLIC and CLICdp to the Snowmass process:

- The CLIC accelerator study: <u>Link</u>
- Beam-dynamics focused on very high energies: <u>Link</u>
- The physics potential: Link
- The detector: Link

Snowmass white paper:

https://arxiv.org/abs/2203.09186

Broadly speaking: "Updated accelerator part of 2018 Summary Report"

The CLIC project

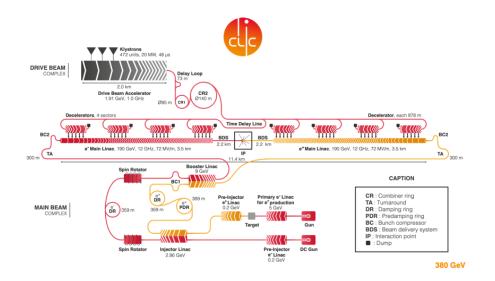
O. Brunner^a, P. N. Burrows^b, S. Calatroni^a, N. Catalan Lasheras^a, R. Corsini^a, G. D'Auria^c, S. Doebert^a, A. Faus-Golfe^d, A. Grudiev^a, A. Latina^a, T. Lefevre^a, G. Mcmonagle^a, J. Osborne^a, Y. Papaphilippou^a, A. Robson^c, C. Rossi^a, R. Ruber^d, D. Schulte^a, S. Stapnes^a; I. Syratchev^a, W. Wienesch^a

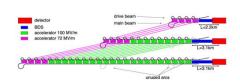
*CERN, Geneva, Switzerland, ^bJohn Adams Institute, University of Oxford, United Kingdom, *Elettra Sincrotrone Trieste, Italy, *IJCLab, Orsay, France, *University of Glasgow, United Kingdom, *Ulpsala University, Sweden

April 4, 202

Abstra

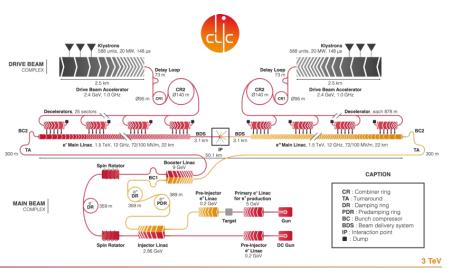
The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e^+e^- collider under development by the CLIC accelerator collaboration, hosted by CERN. The CLIC accelerator has been optimised for three energy stages at centre-of-mass energies 380 GeV, 1.5 TeV and 3 TeV [21]. CLIC uses a novel two-beam acceleration technique, with normal-conducting accelerating structures operating in the range of 70 MeV into 100 MeV in.


stages at centive-dense energies 200 GeV, 1, 3 18W and 3 RV [21]. CLIC uses a novel two-less as exceeded to coloragon, with meanless colorating exceeding extractors operation in the range of 70 MeV in an observable of the colorage of 70 MeV in a colorage of the colorage of 70 MeV in a colorage of the colorage of the colorage of 70 MeV in an observable of the colorage of the color


been carried out by the CLIC detector and physics (CLICdp) collaboration. CLIC provides excellent sensitivity to Beyund Standard Model physics, through direct searches and via a broad set of previous measurements of Standard Model processes, particularly in the Higgs and top-quark sectors. The physics potential at the three energy stages has been explored in detail [2, 3, 17] and presented in submissions to the European Strategy Update process.

> Submitted to the Proceedings of the US Community Studon the Future of Particle Physics (Snowmass 2021)

CLIC from 380 GeV to 3 TeV



CLIC3000

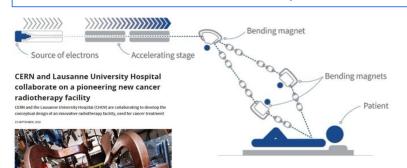
Extend by extending main linacs, increase drivebeam pulse-length and power, and a second drivebeam to get to 3 TeV

Table 1.1: Key parameters of the CLIC energy stages.

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	$_{ m Hz}$	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	$\mathrm{MV/m}$	72	72/100	72/100
Total luminosity	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\mathrm{fb^{-1}}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim \!\! 60/1.5$	$\sim \!\! 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

CLIC - Scheme of the Compact Linear Collider (CLIC)

CLIC is heavily prototyped

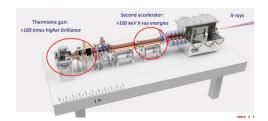


The CLIC accelerator studies are mature:

- Optimised design for cost and power
- Many tests in CTF3, FELs, light-sources and test-stands
- Technical developments of "all" key elements

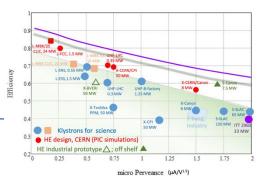
On-going and recent CLIC studies

The X-band technology readiness for the 380 GeV CLIC initial phase - manufacturability and developments driven by use in small compact accelerators for industrial experience


X-band studies:
For CLIC and applications in smaller linacs

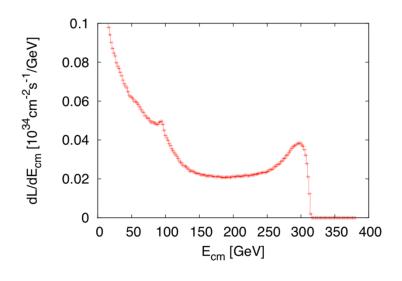
Luminosity:
Beam-dynamics studies and related hardware optimisation for nano beams

RF efficiency and sustainability studies


Optimizing the luminosity at 380 GeV at 2.3 x 10³⁴ cm⁻² s⁻¹— already implemented for Snowmass paper, further work to provide margins will continue (HW and SW)

Project summary for Snowmass: https://arxiv.org/pdf/2203.09186.pdf

Improving the **power efficiency** for both the initial phase (already in Snowmass report) and at high energies, including more **general sustainability studies** (in many cases done together with ILC – see later)



Luminosities studies 2019-22

- Luminosity margins and increases
 - Initial estimates of static and dynamic degradations from damping ring to IP gave: 1.5 x 10³⁴ cm⁻² s⁻¹
 - Simulations give 2.8 on average, and 90% of the machines above 2.3 x
 10³⁴ cm⁻² s⁻¹
 - A "perfect" machine will give: 4.3 x 10³⁴ cm⁻² s⁻¹
 - In addition: doubling the frequency (50 Hz to 100 Hz) would double the luminosity, at a cost of ~55% and ~5% power and cost increase
- Z pole performance, 2.3x10³² 0.4x10³⁴ cm⁻² s⁻¹
 - The latter number when accelerator configured for Z running (e.g. early or end of first stage)
- Gamma Gamma spectrum (example)

These numbers are already included in the Snowmass report 2021

Power and Energy

CLIC power at 380 GeV: 110 MW.

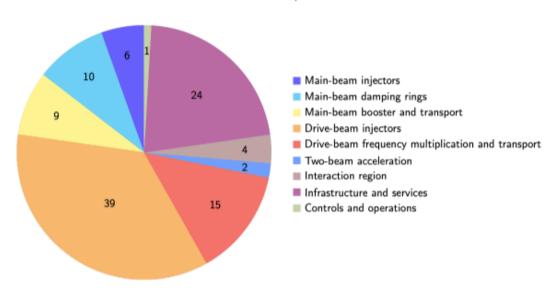


Fig. 4.8: Breakdown of power consumption between different domains of the CLIC accelerator in MW at a centre-of-mass energy of 380 GeV. The contributions add up to a total of 110 MW. (image credit: CLIC)

Table 4.2: Estimated power consumption of CLIC at the three centre-of-mass energy stages and for different operation modes. The 380 GeV numbers are for the drive-beam option and have been updated as described in Section 4.4, whereas the estimates for the higher energy stages are from [57].

Collision energy [GeV]	Running [MW]	Standby [MW]	Off [MW]
380	110	25	9
1500	364	38	13
3000	589	46	17

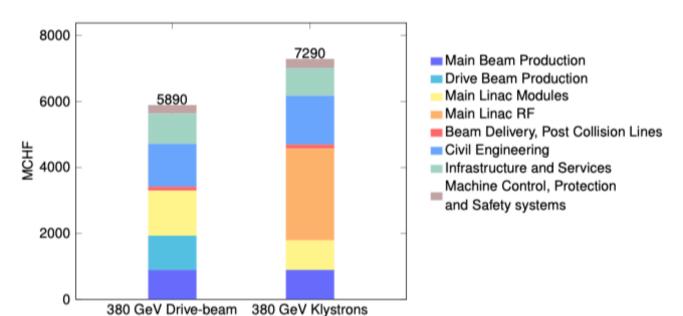
Power estimate bottom up (concentrating on 380 GeV systems)

 Very large reductions since the CDR, better estimates of nominal settings, much more optimised drivebeam complex and more efficient klystrons, injectors more optimized, main target damping ring RF significantly reduced, recent L-band klystron studies

Energy consumption ~0.6 TWh yearly, CERN is currently (when running) at 1.2 TWh (~90% in accelerators)

1.5 TeV and 3 TeV numbers still from the CDR (but included in the reports), to be re-done the next ~2 years

Savings of high efficiency klystrons, DR RF redesign or permanent magnets not included at this stage, so numbers will be reduced



Cost - I

Machine has been re-costed bottom-up in 2017-18

- Methods and costings validated at review on 7 November 2018 – similar to LHC, ILC, CLIC CDR
- Technical uncertainty and commercial uncertainty estimated

Total (rounded)		5890	7290
	Access Safety & Control System	23	23
Machine Control, Protection and Safety systems	Machine Protection	14	8
	Machine Control Infrastructure	146	131
Infrastructure and Services	Safety system	72	114
	Transport / installation	38	36
	Cooling and ventilation	443	410
	Survey and Alignment	194	147
	Electrical distribution	243	243
Civil Engineering	Civil Engineering	1300	1479
Post Collision Lines	Post-collision lines/dumps	47	47
Beam Delivery and	Final focus, Exp. Area	22	22
D D II 1	Beam Delivery Systems	52	52
Main Linac RF	Main Linac Xband RF	_	2788
Main Linac Modules	Post decelerators	37	_
Drive Beam Production	Main Linac Modules	1329	895
	Beam Transport	76	_
	Frequency Multiplication	379	_
Main Beam Production	Injectors	584	
	Beam Transport	409	409
	Damping Rings	309	309
Domain	Injectors	175	175
	Sub-Domain	Drive-Beam	Klystro
Domain	Sub-Domain	Cost [M	$_{\mathrm{CHF}]}$

CLIC 380 GeV Drive-Beam based: 5890^{+1470}_{-1270} MCHF;

CLIC 380 GeV Klystron based: 7290^{+1800}_{-1540} MCHF.

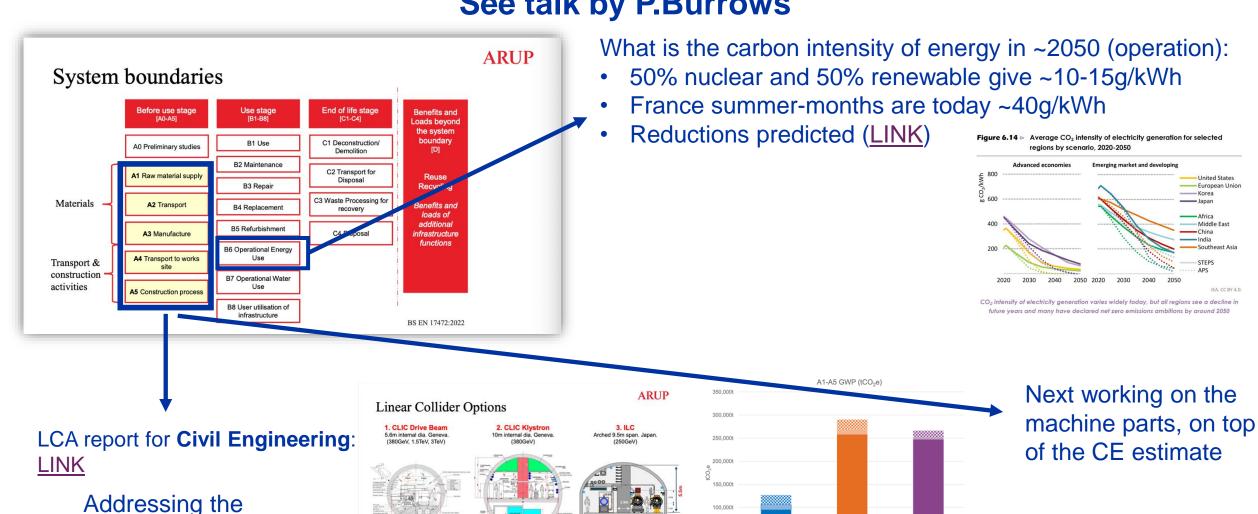
Cost - II

Other cost estimates:

Construction:

- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of ML)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of ML)
- Labour estimate: ~11500 FTE for the 380 GeV construction

Operation:


- 116 MCHF (see assumptions in box below)
- Energy costs

- 1% for accelerator hardware parts (e.g. modules).
- 3\% for the RF systems, taking the limited lifetime of these parts into account.
- 5% for cooling, ventilation and electrical infrastructures etc. (includes contract labour and consumables)

These replacement/operation costs represent 116 MCHF per year.

Sustainability: Life Cycle Assessment (LCA)

See talk by P.Burrows

Around 11-12 kton/km main linac (CLIC DB and ILC)

CLIC Drive Beam 380GeV CLIC Klystron 380GeV

II.C 250Ge\ Cavern:

Civil Engineering

impact

Towards the ESPP update reports

Preparing "Project Readiness Report" as a step toward a TDR
Assuming ESPP in ~ 2025-6, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

However several important changes compared to what is presented above:

- Energy scales: 380 GeV and 2 TeV with one drivebeam, consider also 100 Hz running at 250 GeV (i.e. two parallel experiments)
- Several updates on parameters (injectors, damping rings, drive-beam) based on new designs, results and prototyping (e.g. klystrons, magnets) - however no major changes
- Technology results updates, including more on use of them in other projects (e.g. alignment, instrumentation, X-band RF is small linacs)
- Update costing and power for costing interplay between inflation and CHF exchanges and for example power at 2 TeV never estimated
- LCAs
- More on next steps (prep phase)
- More on several of these topics in P.Burrows talk

Towards Carbon Accounting with LCA

This plot (blue part) is for 11 km of tunnel, scales with length (ref. CE study prev. page)

Next working on machine parts (orange), here assumed hardware = civil engineering impact

